File size: 5,672 Bytes
216ec23
e0054db
784a2a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216ec23
 
784a2a1
216ec23
 
784a2a1
 
a21168c
784a2a1
216ec23
784a2a1
e0054db
216ec23
784a2a1
216ec23
784a2a1
 
 
 
 
216ec23
773f99b
216ec23
784a2a1
 
 
 
 
 
 
 
216ec23
784a2a1
216ec23
784a2a1
216ec23
784a2a1
216ec23
784a2a1
216ec23
e0054db
 
 
 
 
 
 
 
 
 
4e39cff
e0054db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e39cff
e0054db
 
 
216ec23
784a2a1
 
216ec23
784a2a1
 
216ec23
784a2a1
 
 
 
 
e0054db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
library_name: peft
tags:
- Phi-2B
- Portuguese
- Bode
- LLM
- Alpaca
license: mit
language:
- pt
- en
metrics:
- accuracy
- f1
- precision
- recall
pipeline_tag: text-generation
---

# Phi-Bode


<!--- PROJECT LOGO -->
<p align="center">
  <img src="https://huggingface.co/recogna-nlp/Phi-Bode/resolve/main/phi-bode.jpg" alt="Phi-Bode Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
</p>

Phi-Bode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo base Phi-2B fornecido pela [Microsoft](https://huggingface.co/microsoft/phi-2). Este modelo foi refinado através do processo de fine-tuning utilizando o dataset Alpaca traduzido para o português. O principal objetivo deste modelo é ser viável para pessoas
que não possuem recursos computacionais disponíveis para o uso de LLMs (Large Language Models). Ressalta-se que este é um trabalho em andamento e o modelo ainda apresenta problemas na geração de texto em português.

## Características Principais

- **Modelo Base:** Phi-2B, criado pela Microsoft, com 2.7 bilhões de parâmetros.
- **Dataset para Fine-tuning:** Uso do dataset Alpaca traduzido para português para adaptar o modelo às nuances da língua portuguesa.
- **Quantização:** O modelo base Phi-2B foi quantizado em 4 bits para reduzir o tamanho e a complexidade computacional.
- **Treinamento:** O treinamento foi realizado utilizando o método LoRa, visando eficiência computacional e otimização de recursos.
- **Merge de Modelos:** Após o treinamento, o modelo treinado quantizado em 4 bits foi mesclado com o modelo base para preservar a qualidade do modelo.

## Outros modelos disponíveis

| Quantidade de parâmetros       | PEFT | Modelo                                                                                      | 
| :-:                            | :-:  |  :-:                                                                                         | 
| 7b                             | &check; | [recogna-nlp/bode-7b-alpaca-pt-br](https://huggingface.co/recogna-nlp/bode-7b-alpaca-pt-br)  |
| 13b                            | &check; | [recogna-nlp/bode-13b-alpaca-pt-br](https://huggingface.co/recogna-nlp/bode-13b-alpaca-pt-br)|
| 7b                             |    | [recogna-nlp/bode-7b-alpaca-pt-br-no-peft](https://huggingface.co/recogna-nlp/bode-7b-alpaca-pt-br-no-peft)  |
| 13b                             |    | [recogna-nlp/bode-13b-alpaca-pt-br-no-peft](https://huggingface.co/recogna-nlp/bode-13b-alpaca-pt-br-no-peft)  |
| 7b-gguf                             |    | [recogna-nlp/bode-7b-alpaca-pt-br-gguf](https://huggingface.co/recogna-nlp/bode-7b-alpaca-pt-br-gguf)  |
| 13b-gguf                             |    | [recogna-nlp/bode-13b-alpaca-pt-br-gguf](https://huggingface.co/recogna-nlp/bode-13b-alpaca-pt-br-gguf)  |

## Utilização

O modelo Phi-Bode pode ser utilizado para uma variedade de tarefas de processamento de linguagem natural (PLN) em português, como geração de texto, classificação, sumarização de texto, entre outros.

### Exemplo de uso

Abaixo, colocamos um exemplo simples de como carregar o modelo e gerar texto:

```python
!pip3 -q install -q -U bitsandbytes==0.42.0
!pip3 -q install -q -U accelerate==0.27.1
!pip3 -q install -q -U transformers==4.38.0

from transformers import AutoModelForCausalLM, AutoTokenizer

hf_auth = 'HF_ACCESS_KEY'

model_id = "recogna-nlp/Phi-Bode"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"":0}, trust_remote_code=True, token=hf_auth)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token=hf_auth)

def get_completion(model, tokenizer, query : str, input : str = '', device = 'cuda:0', max_new_tokens=128) -> str:
    if len(input) == 0:
      prompt_template = """Abaixo está uma instrução que descreve uma tarefa. Escreva uma resposta que complete adequadamente o pedido.
      ### Instrução: {query}
      ### Resposta:"""
      prompt = prompt_template.format(query=query)
    else:
      prompt_template = """Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido.
      ### Instrução: {query}
      ### Entrada: {input}
      ### Resposta:"""
      prompt = prompt_template.format(query=query, input=input)
    encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)
    model_inputs = encodeds.to(device)
    generated_ids = model.generate(**model_inputs,
                                   max_new_tokens=max_new_tokens,
                                   do_sample=True,
                                   pad_token_id=tokenizer.eos_token_id)
    decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
    return (decoded[len(prompt):])

result = get_completion(model=model, tokenizer=tokenizer, query="Qual é a capital da França?")
print(result)
#Exemplo de resposta obtida: A capital da França é Paris. A cidade tem uma estratégia de transporte moderno difícil entre todos os lugares, incluindo ferroviário, busca, metro e línguações. Para obter uma avaliação completa da cidade, visita esta aumentar a experiência gastronômica, cultural e natural.
```

## Contribuições
Contribuições para a melhoria deste modelo são bem-vindas. Sinta-se à vontade para abrir problemas e solicitações pull.

## Citação
Se você deseja utilizar o Phi-Bode em sua pesquisa, cite-o da seguinte maneira:

```
    @misc{phibode2024,
      author={Gabriel Lino Garcia and Pedro Henrique Paiola and João Paulo Papa},
      year={2024},
}
```