File size: 31,367 Bytes
ab14733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
---
base_model: WhereIsAI/UAE-Large-V1
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3474
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Microsoft Corporation believes that its success is based upon its
    ability to transform to meet the needs of customers. Its growth strategy includes
    innovation across its cloud platforms and services, as well as investing in complementary
    businesses, products, services, and technologies to extend and grow its product
    offerings.
  sentences:
  - What factors caused the surge in Tesla’s stock prices in the first half of 2023?
  - What's Microsoft growth strategy in the cloud computing sector?
  - How has Microsoft Corporation performed in terms of stock prices over the past
    five years?
- source_sentence: Amazon reported the Q3 2023 earnings revealing a 21% year-over-year
    increase in the revenue, which stood at $116.38 billion. Net income increased
    57% to $6.66 billion, or $13.21 per diluted share, compared to $4.23 billion,
    or $8.42 per diluted share, in third quarter 2022. Amazon Web Services (AWS) revenue
    grew 32% in the quarter to $15 billion.
  sentences:
  - Can you tell about Amazon's Q3 2023 earnings?
  - What was the net income of Microsoft in Fiscal Year 2024?
  - What is the significance of EBITDA in financial analysis?
- source_sentence: For the fiscal year 2024, Walmart had an operating profit margin
    of 20%.
  sentences:
  - What is Pfizer's dividend yield for the financial year 2022?
  - What was Exxon Mobil Corporation's net income for the fourth quarter of 2023?
  - What is the operating profit margin for Walmart for the fiscal year 2024?
- source_sentence: The slowdown in construction, particularly in developing markets,
    resulted in a decrease in demand for Caterpillar's machinery and equipment, which
    negatively impacted the revenue for the year 2022.
  sentences:
  - How did the slow down in construction in 2022 affect Caterpillar's revenues?
  - What is JP Morgan's strategy when it comes to sustainability?
  - What was the debt-to-equity ratio for Tesla Inc in Q4 of 2022?
- source_sentence: According to Johnson & Johnson’s 2024 guidance report, their pharmaceutical
    sector was projected to grow by 7% in 2023 after considering crucial factors like
    the overall market demand, introduction of new drugs and potential impact of patent
    expirations.
  sentences:
  - What are Caterpillar's initiatives for enhancing its product sustainability?
  - How is JPMorgan Chase & Co. improving its cybersecurity measures?
  - What was the projected growth of Johnson & Johnson’s pharmaceutical sector in
    2023?
model-index:
- name: UAE-Large-V1-financial-embeddings-matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.8316062176165803
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9326424870466321
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.966321243523316
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9896373056994818
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8316062176165803
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31088082901554404
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1932642487046632
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09896373056994817
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8316062176165803
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9326424870466321
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.966321243523316
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9896373056994818
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9113990251008172
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8860854099843737
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.886565872062324
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.8290155440414507
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9326424870466321
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.966321243523316
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9844559585492227
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8290155440414507
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31088082901554404
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1932642487046632
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09844559585492228
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8290155440414507
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9326424870466321
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.966321243523316
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9844559585492227
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9098442107332023
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8854439098610082
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8863342112694444
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.8238341968911918
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9378238341968912
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9637305699481865
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9844559585492227
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8238341968911918
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3126079447322971
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19274611398963729
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09844559585492228
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8238341968911918
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9378238341968912
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9637305699481865
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9844559585492227
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9085199240883707
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8836016530964717
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8844289493397997
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.8212435233160622
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9326424870466321
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.961139896373057
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9792746113989638
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8212435233160622
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31088082901554404
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19222797927461138
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09792746113989637
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8212435233160622
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9326424870466321
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.961139896373057
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9792746113989638
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9050964679750835
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8807097623159799
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8817273654804927
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.8186528497409327
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9352331606217616
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.961139896373057
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9792746113989638
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8186528497409327
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3117443868739206
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19222797927461138
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09792746113989637
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8186528497409327
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9352331606217616
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.961139896373057
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9792746113989638
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9031436826413919
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8781797433999506
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8793080516202277
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.7979274611398963
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9222797927461139
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9585492227979274
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9792746113989638
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7979274611398963
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.307426597582038
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19170984455958548
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09792746113989637
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7979274611398963
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9222797927461139
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9585492227979274
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9792746113989638
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8935743388819871
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8654926391973025
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8667278930244052
      name: Cosine Map@100
---

# UAE-Large-V1-financial-embeddings-matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [WhereIsAI/UAE-Large-V1](https://huggingface.co/WhereIsAI/UAE-Large-V1) <!-- at revision 52d9e291d9fc7fc7f5276ff077b26fd1880c7c4f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("rbhatia46/UAE-Large-V1-financial-rag-matryoshka")
# Run inference
sentences = [
    'According to Johnson & Johnson’s 2024 guidance report, their pharmaceutical sector was projected to grow by 7% in 2023 after considering crucial factors like the overall market demand, introduction of new drugs and potential impact of patent expirations.',
    'What was the projected growth of Johnson & Johnson’s pharmaceutical sector in 2023?',
    'How is JPMorgan Chase & Co. improving its cybersecurity measures?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8316     |
| cosine_accuracy@3   | 0.9326     |
| cosine_accuracy@5   | 0.9663     |
| cosine_accuracy@10  | 0.9896     |
| cosine_precision@1  | 0.8316     |
| cosine_precision@3  | 0.3109     |
| cosine_precision@5  | 0.1933     |
| cosine_precision@10 | 0.099      |
| cosine_recall@1     | 0.8316     |
| cosine_recall@3     | 0.9326     |
| cosine_recall@5     | 0.9663     |
| cosine_recall@10    | 0.9896     |
| cosine_ndcg@10      | 0.9114     |
| cosine_mrr@10       | 0.8861     |
| **cosine_map@100**  | **0.8866** |

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.829      |
| cosine_accuracy@3   | 0.9326     |
| cosine_accuracy@5   | 0.9663     |
| cosine_accuracy@10  | 0.9845     |
| cosine_precision@1  | 0.829      |
| cosine_precision@3  | 0.3109     |
| cosine_precision@5  | 0.1933     |
| cosine_precision@10 | 0.0984     |
| cosine_recall@1     | 0.829      |
| cosine_recall@3     | 0.9326     |
| cosine_recall@5     | 0.9663     |
| cosine_recall@10    | 0.9845     |
| cosine_ndcg@10      | 0.9098     |
| cosine_mrr@10       | 0.8854     |
| **cosine_map@100**  | **0.8863** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8238     |
| cosine_accuracy@3   | 0.9378     |
| cosine_accuracy@5   | 0.9637     |
| cosine_accuracy@10  | 0.9845     |
| cosine_precision@1  | 0.8238     |
| cosine_precision@3  | 0.3126     |
| cosine_precision@5  | 0.1927     |
| cosine_precision@10 | 0.0984     |
| cosine_recall@1     | 0.8238     |
| cosine_recall@3     | 0.9378     |
| cosine_recall@5     | 0.9637     |
| cosine_recall@10    | 0.9845     |
| cosine_ndcg@10      | 0.9085     |
| cosine_mrr@10       | 0.8836     |
| **cosine_map@100**  | **0.8844** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8212     |
| cosine_accuracy@3   | 0.9326     |
| cosine_accuracy@5   | 0.9611     |
| cosine_accuracy@10  | 0.9793     |
| cosine_precision@1  | 0.8212     |
| cosine_precision@3  | 0.3109     |
| cosine_precision@5  | 0.1922     |
| cosine_precision@10 | 0.0979     |
| cosine_recall@1     | 0.8212     |
| cosine_recall@3     | 0.9326     |
| cosine_recall@5     | 0.9611     |
| cosine_recall@10    | 0.9793     |
| cosine_ndcg@10      | 0.9051     |
| cosine_mrr@10       | 0.8807     |
| **cosine_map@100**  | **0.8817** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8187     |
| cosine_accuracy@3   | 0.9352     |
| cosine_accuracy@5   | 0.9611     |
| cosine_accuracy@10  | 0.9793     |
| cosine_precision@1  | 0.8187     |
| cosine_precision@3  | 0.3117     |
| cosine_precision@5  | 0.1922     |
| cosine_precision@10 | 0.0979     |
| cosine_recall@1     | 0.8187     |
| cosine_recall@3     | 0.9352     |
| cosine_recall@5     | 0.9611     |
| cosine_recall@10    | 0.9793     |
| cosine_ndcg@10      | 0.9031     |
| cosine_mrr@10       | 0.8782     |
| **cosine_map@100**  | **0.8793** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7979     |
| cosine_accuracy@3   | 0.9223     |
| cosine_accuracy@5   | 0.9585     |
| cosine_accuracy@10  | 0.9793     |
| cosine_precision@1  | 0.7979     |
| cosine_precision@3  | 0.3074     |
| cosine_precision@5  | 0.1917     |
| cosine_precision@10 | 0.0979     |
| cosine_recall@1     | 0.7979     |
| cosine_recall@3     | 0.9223     |
| cosine_recall@5     | 0.9585     |
| cosine_recall@10    | 0.9793     |
| cosine_ndcg@10      | 0.8936     |
| cosine_mrr@10       | 0.8655     |
| **cosine_map@100**  | **0.8667** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 3,474 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 15 tokens</li><li>mean: 44.84 tokens</li><li>max: 112 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 18.34 tokens</li><li>max: 32 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                     | anchor                                                                                 |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|
  | <code>Exxon Mobil faces substantial risk factors including fluctuating market prices for oil and gas, regulatory environment changes and the potential for catastrophic accidents such as oil spills.</code>                                                                 | <code>What is the key risk factor faced by Exxon Mobil in the energy sector?</code>    |
  | <code>Tesla’s remarkable revenue growth in 2023 is largely driven by its robust electric vehicle sales in China and the strong demand for its energy storage products.</code>                                                                                                | <code>What is the main reason behind Tesla’s revenue growth in 2023?</code>            |
  | <code>Amazon is expected to see a sales growth of 23% in the next financial year, driven by the increased demand for their ecommerce business and strong growth in AWS. This projection is subject to changes in the market condition and customer spending patterns.</code> | <code>What is the projected sales growth for Amazon in the next financial year?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8807     | 6      | -             | 0.8708                  | 0.8499                 | 0.8647                 | 0.8705                 | 0.8307                | 0.8700                 |
| 1.4679     | 10     | 0.7358        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.9083     | 13     | -             | 0.8848                  | 0.8724                 | 0.8782                 | 0.8861                 | 0.8617                | 0.8855                 |
| **2.9358** | **20** | **0.1483**    | **0.8865**              | **0.8793**             | **0.8814**             | **0.8857**             | **0.8667**            | **0.8863**             |
| 3.5229     | 24     | -             | 0.8866                  | 0.8793                 | 0.8817                 | 0.8844                 | 0.8667                | 0.8863                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->