rasyosef commited on
Commit
29aeb3c
1 Parent(s): b234e3c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -194
README.md CHANGED
@@ -1,199 +1,96 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/phi-2
5
+ datasets:
6
+ - teknium/OpenHermes-2.5
7
+ - HuggingFaceH4/ultrafeedback_binarized
8
+ - argilla/distilabel-intel-orca-dpo-pairs
9
+ - argilla/distilabel-math-preference-dpo
10
+ pipeline_tag: text-generation
11
  ---
12
 
13
+ # phi-2-instruct-v0.1
14
+ [Phi-2](https://huggingface.co/microsoft/phi-2) is a Transformer with **2.7 billion** parameters. It was trained using the same data sources as [Phi-1.5](https://huggingface.co/microsoft/phi-1.5), augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
15
+
16
+ The model has underwent a post-training process that incorporates both **supervised fine-tuning** and **direct preference optimization** for instruction following. I used the [trl](https://huggingface.co/docs/trl/en/index) library and a single **A100 40GB** GPU during both the SFT and DPO steps.
17
+
18
+ - Supervised Fine-Tuning
19
+ - SFT Model: [phi-2-sft](https://huggingface.co/rasyosef/phi-2-sft-openhermes-128k-v2)
20
+ - Used 128,000 instruction, response pairs from the [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5) dataset
21
+
22
+ - Direct Preference Optimization (DPO)
23
+ - LoRA Adapter: [phi-2-dpo](https://huggingface.co/rasyosef/phi-2-openhermes-128k-v2-dpo-combined)
24
+ - Used a combination of the following preference datasets
25
+ - [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
26
+ - [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs)
27
+ - [argilla/distilabel-math-preference-dpo](https://huggingface.co/datasets/argilla/distilabel-math-preference-dpo)
28
+
29
+ ## How to use
30
+ ### Chat Format
31
+
32
+ Given the nature of the training data, the phi-2 instruct model is best suited for prompts using the chat format as follows.
33
+ You can provide the prompt as a question with a generic template as follow:
34
+ ```markdown
35
+ <|im_start|>system
36
+ You are a helpful assistant.<|im_end|>
37
+ <|im_start|>user
38
+ Question?<|im_end|>
39
+ <|im_start|>assistant
40
+ ```
41
+
42
+ For example:
43
+ ```markdown
44
+ <|im_start|>system
45
+ You are a helpful assistant.<|im_end|>
46
+ <|im_start|>user
47
+ How to explain Internet for a medieval knight?<|im_end|>
48
+ <|im_start|>assistant
49
+ ```
50
+ where the model generates the text after `<|im_start|>assistant` .
51
+
52
+ ### Sample inference code
53
+
54
+ This code snippets show how to get quickly started with running the model on a GPU:
55
+
56
+ ```python
57
+ import torch
58
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
59
+
60
+ torch.random.manual_seed(0)
61
+
62
+ model_id = "rasyosef/phi-2-instruct-v0.1"
63
+ model = AutoModelForCausalLM.from_pretrained(
64
+ model_id,
65
+ device_map="cuda",
66
+ torch_dtype="auto"
67
+ )
68
+
69
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
70
+
71
+ messages = [
72
+ {"role": "system", "content": "You are a helpful AI assistant."},
73
+ {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
74
+ {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
75
+ {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
76
+ ]
77
+
78
+ pipe = pipeline(
79
+ "text-generation",
80
+ model=model,
81
+ tokenizer=tokenizer,
82
+ )
83
+
84
+ generation_args = {
85
+ "max_new_tokens": 256,
86
+ "return_full_text": False,
87
+ "temperature": 0.0,
88
+ "do_sample": False,
89
+ }
90
+
91
+ output = pipe(messages, **generation_args)
92
+ print(output[0]['generated_text'])
93
+ ```
94
+
95
+ Note: If you want to use flash attention, call _AutoModelForCausalLM.from_pretrained()_ with _attn_implementation="flash_attention_2"_
96