--- library_name: diffusers license: apache-2.0 datasets: - valhalla/emoji-dataset language: - en tags: - art --- ## Model Details **Abstract**: *Trained an Unconditional Diffusion Model on emoji dataset with DDPM noise scheduler * ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-cifar10-32" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm().images[0] # save image image.save("ddpm_generated_image.png") ``` ## Samples Generated 1. ![sample_1](https://huggingface.co/randomani/DDPM-emoji-64/blob/main/1.png) 2. ![sample_2](https://huggingface.co/randomani/DDPM-emoji-64/blob/main/2.png) 3. ![sample_3](https://huggingface.co/randomani/DDPM-emoji-64/blob/main/3.png) 4. ![sample_4](https://huggingface.co/randomani/DDPM-emoji-64/blob/main/4.png)