|
import pandas as pd |
|
import pickle |
|
from typing import Dict, List, Any |
|
import numpy as np |
|
import os |
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
pathb = os.path.join(path,"./churn.pkl") |
|
self.pipe = pd.read_pickle(pathb) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. A string representing what the label/class is |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
df = pd.DataFrame(inputs) |
|
|
|
df["TotalCharges"] = df["TotalCharges"].replace(" ", np.nan, regex=False).astype(float) |
|
df = df.drop(columns=["customerID"]) |
|
df = df.drop(columns=["Churn"]) |
|
|
|
|
|
pred = self.pipe.predict(df) |
|
|
|
|
|
return {"pred": pred} |
|
|