File size: 17,251 Bytes
e0390e2
 
a493809
 
e0390e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2510e13
e0390e2
c105087
 
e0390e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9677b40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
---
base_model: indobenchmark/indobert-base-p2
datasets:
- quarkss/stsb-indo-mt
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
widget:
- source_sentence: Dua ekor anjing berenang di kolam renang.
  sentences:
  - Anjing-anjing sedang berenang di kolam renang.
  - Seekor binatang sedang berjalan di atas tanah.
  - Seorang pria sedang menyeka pinggiran mangkuk.
- source_sentence: Seorang anak perempuan sedang mengiris mentega menjadi dua bagian.
  sentences:
  - Seorang wanita sedang mengiris tahu.
  - Dua orang berkelahi.
  - Seorang pria sedang menari.
- source_sentence: Seorang gadis sedang makan kue mangkuk.
  sentences:
  - Seorang pria sedang mengiris bawang putih dengan alat pengiris mandolin.
  - Seorang pria sedang memotong dan memotong bawang.
  - Seorang wanita sedang makan kue mangkuk.
- source_sentence: Sebuah helikopter mendarat di landasan helikopter.
  sentences:
  - Seorang pria sedang mengiris mentimun.
  - Seorang pria sedang memotong batang pohon dengan kapak.
  - Sebuah helikopter mendarat.
- source_sentence: Seorang pria sedang berjalan dengan seekor kuda.
  sentences:
  - Seorang pria sedang menuntun seekor kuda dengan tali kekang.
  - Seorang pria sedang menembakkan pistol.
  - Seorang wanita sedang memetik tomat.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: 0.8577280779646681
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8588776334781149
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8315261521874587
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8355406849443783
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8318083198603524
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8359194889385243
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7767060276322824
      name: Pearson Dot
    - type: spearman_dot
      value: 0.783607744137448
      name: Spearman Dot
    - type: pearson_max
      value: 0.8577280779646681
      name: Pearson Max
    - type: spearman_max
      value: 0.8588776334781149
      name: Spearman Max
    - type: pearson_cosine
      value: 0.8122790124383042
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8123119892530147
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7987643661729152
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7966661480553803
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7992882233155829
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.797227936168015
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.712195542080357
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7014898656834544
      name: Spearman Dot
    - type: pearson_max
      value: 0.8122790124383042
      name: Pearson Max
    - type: spearman_max
      value: 0.8123119892530147
      name: Spearman Max
---

# SentenceTransformer based on indobenchmark/indobert-base-p2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## STSB Test
| Model                                   |   Spearman Correlation |
|:----------------------------------------|-----------------------:|
| quarkss/indobert-large-stsb             |                 0.8366 |
| quarkss/indobert-base-stsb              |                 0.8123 |
| sentence-transformers/all-MiniLM-L6-v2  |                 0.5952 |
| indobenchmark/indobert-large-p2         |                 0.5673 |
| sentence-transformers/all-mpnet-base-v2 |                 0.5531 |
| sentence-transformers/stsb-bert-base    |                 0.5349 |
| indobenchmark/indobert-base-p2          |                 0.5309 |

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("quarkss/indobert-base-stsb")
# Run inference
sentences = [
    'Seorang pria sedang berjalan dengan seekor kuda.',
    'Seorang pria sedang menuntun seekor kuda dengan tali kekang.',
    'Seorang pria sedang menembakkan pistol.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8577     |
| **spearman_cosine** | **0.8589** |
| pearson_manhattan   | 0.8315     |
| spearman_manhattan  | 0.8355     |
| pearson_euclidean   | 0.8318     |
| spearman_euclidean  | 0.8359     |
| pearson_dot         | 0.7767     |
| spearman_dot        | 0.7836     |
| pearson_max         | 0.8577     |
| spearman_max        | 0.8589     |

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.8123     |
| spearman_cosine    | 0.8123     |
| pearson_manhattan  | 0.7988     |
| spearman_manhattan | 0.7967     |
| pearson_euclidean  | 0.7993     |
| spearman_euclidean | 0.7972     |
| pearson_dot        | 0.7122     |
| spearman_dot       | 0.7015     |
| pearson_max        | 0.8123     |
| **spearman_max**   | **0.8123** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                        | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 9.65 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 9.59 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                              | sentence2                                                                                | score             |
  |:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:------------------|
  | <code>Sebuah pesawat sedang lepas landas.</code>                       | <code>Sebuah pesawat terbang sedang lepas landas.</code>                                 | <code>1.0</code>  |
  | <code>Seorang pria sedang memainkan seruling besar.</code>             | <code>Seorang pria sedang memainkan seruling.</code>                                     | <code>0.76</code> |
  | <code>Seorang pria sedang mengoleskan keju parut di atas pizza.</code> | <code>Seorang pria sedang mengoleskan keju parut di atas pizza yang belum matang.</code> | <code>0.76</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | spearman_cosine | spearman_max |
|:------:|:----:|:-------------:|:---------------:|:------------:|
| 0.2778 | 100  | 0.0615        | -               | -            |
| 0.5556 | 200  | 0.0336        | -               | -            |
| 0.8333 | 300  | 0.0331        | -               | -            |
| 1.1111 | 400  | 0.0235        | -               | -            |
| 1.3889 | 500  | 0.018         | 0.8472          | -            |
| 1.6667 | 600  | 0.0164        | -               | -            |
| 1.9444 | 700  | 0.0159        | -               | -            |
| 2.2222 | 800  | 0.0097        | -               | -            |
| 2.5    | 900  | 0.0085        | -               | -            |
| 2.7778 | 1000 | 0.0084        | 0.8563          | -            |
| 3.0556 | 1100 | 0.0076        | -               | -            |
| 3.3333 | 1200 | 0.0056        | -               | -            |
| 3.6111 | 1300 | 0.0054        | -               | -            |
| 3.8889 | 1400 | 0.0052        | -               | -            |
| 4.1667 | 1500 | 0.0047        | 0.8589          | -            |
| 4.4444 | 1600 | 0.0045        | -               | -            |
| 4.7222 | 1700 | 0.004         | -               | -            |
| 5.0    | 1800 | 0.0042        | -               | 0.8123       |


### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.0.1+cu117
- Accelerate: 0.32.1
- Datasets: 2.17.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->