qaihm-bot commited on
Commit
0ca919a
1 Parent(s): 000f397

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +40 -19
README.md CHANGED
@@ -15,7 +15,7 @@ tags:
15
 
16
  Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
17
 
18
- This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment).
19
  This repository provides scripts to run YOLOv8-Segmentation on Qualcomm® devices.
20
  More details on model performance across various devices, can be found
21
  [here](https://aihub.qualcomm.com/models/yolov8_seg).
@@ -31,15 +31,32 @@ More details on model performance across various devices, can be found
31
  - Model size: 13.2 MB
32
  - Number of output classes: 80
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
 
36
 
37
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
- | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.418 ms | 4 - 7 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 6.398 ms | 7 - 17 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so)
41
-
42
-
43
 
44
  ## Installation
45
 
@@ -95,16 +112,16 @@ device. This script does the following:
95
  ```bash
96
  python -m qai_hub_models.models.yolov8_seg.export
97
  ```
98
-
99
  ```
100
- Profile Job summary of YOLOv8-Segmentation
101
- --------------------------------------------------
102
- Device: Snapdragon X Elite CRD (11)
103
- Estimated Inference Time: 6.42 ms
104
- Estimated Peak Memory Range: 4.70-4.70 MB
105
- Compute Units: NPU (333) | Total (333)
106
-
107
-
 
108
  ```
109
 
110
 
@@ -203,15 +220,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
203
  Get more details on YOLOv8-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_seg).
204
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
205
 
 
206
  ## License
207
- - The license for the original implementation of YOLOv8-Segmentation can be found
208
- [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
209
- - The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
 
210
 
211
  ## References
212
  * [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
213
  * [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)
214
 
 
 
215
  ## Community
216
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
217
  * For questions or feedback please [reach out to us](mailto:[email protected]).
 
15
 
16
  Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
17
 
18
+ This model is an implementation of YOLOv8-Segmentation found [here]({source_repo}).
19
  This repository provides scripts to run YOLOv8-Segmentation on Qualcomm® devices.
20
  More details on model performance across various devices, can be found
21
  [here](https://aihub.qualcomm.com/models/yolov8_seg).
 
31
  - Model size: 13.2 MB
32
  - Number of output classes: 80
33
 
34
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
+ |---|---|---|---|---|---|---|---|---|
36
+ | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 6.541 ms | 4 - 6 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
37
+ | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.409 ms | 4 - 14 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so) |
38
+ | YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.616 ms | 13 - 22 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
39
+ | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.861 ms | 3 - 112 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
40
+ | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.775 ms | 5 - 62 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so) |
41
+ | YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.228 ms | 18 - 133 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
42
+ | YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 6.414 ms | 0 - 19 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
43
+ | YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.283 ms | 5 - 6 MB | FP16 | NPU | Use Export Script |
44
+ | YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 6.446 ms | 0 - 200 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
45
+ | YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.278 ms | 5 - 10 MB | FP16 | NPU | Use Export Script |
46
+ | YOLOv8-Segmentation | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 6.49 ms | 4 - 7 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
47
+ | YOLOv8-Segmentation | SA8775 (Proxy) | SA8775P Proxy | QNN | 6.277 ms | 5 - 12 MB | FP16 | NPU | Use Export Script |
48
+ | YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 6.533 ms | 4 - 14 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
49
+ | YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.38 ms | 5 - 6 MB | FP16 | NPU | Use Export Script |
50
+ | YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 9.61 ms | 5 - 103 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
51
+ | YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 9.155 ms | 5 - 44 MB | FP16 | NPU | Use Export Script |
52
+ | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.508 ms | 4 - 75 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
53
+ | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.685 ms | 5 - 57 MB | FP16 | NPU | Use Export Script |
54
+ | YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.821 ms | 0 - 71 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
55
+ | YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.215 ms | 5 - 5 MB | FP16 | NPU | Use Export Script |
56
+ | YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.647 ms | 17 - 17 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
57
 
58
 
59
 
 
 
 
 
 
 
60
 
61
  ## Installation
62
 
 
112
  ```bash
113
  python -m qai_hub_models.models.yolov8_seg.export
114
  ```
 
115
  ```
116
+ Profiling Results
117
+ ------------------------------------------------------------
118
+ YOLOv8-Segmentation
119
+ Device : Samsung Galaxy S23 (13)
120
+ Runtime : TFLITE
121
+ Estimated inference time (ms) : 6.5
122
+ Estimated peak memory usage (MB): [4, 6]
123
+ Total # Ops : 338
124
+ Compute Unit(s) : NPU (338 ops)
125
  ```
126
 
127
 
 
220
  Get more details on YOLOv8-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_seg).
221
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
222
 
223
+
224
  ## License
225
+ * The license for the original implementation of YOLOv8-Segmentation can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
226
+ * The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
227
+
228
+
229
 
230
  ## References
231
  * [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
232
  * [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)
233
 
234
+
235
+
236
  ## Community
237
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
238
  * For questions or feedback please [reach out to us](mailto:[email protected]).