Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ tags:
|
|
15 |
|
16 |
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
|
17 |
|
18 |
-
This model is an implementation of YOLOv8-Segmentation found [here](
|
19 |
This repository provides scripts to run YOLOv8-Segmentation on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/yolov8_seg).
|
@@ -31,15 +31,32 @@ More details on model performance across various devices, can be found
|
|
31 |
- Model size: 13.2 MB
|
32 |
- Number of output classes: 80
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
|
37 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
-
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.418 ms | 4 - 7 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite)
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 6.398 ms | 7 - 17 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so)
|
41 |
-
|
42 |
-
|
43 |
|
44 |
## Installation
|
45 |
|
@@ -95,16 +112,16 @@ device. This script does the following:
|
|
95 |
```bash
|
96 |
python -m qai_hub_models.models.yolov8_seg.export
|
97 |
```
|
98 |
-
|
99 |
```
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
```
|
109 |
|
110 |
|
@@ -203,15 +220,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
203 |
Get more details on YOLOv8-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_seg).
|
204 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
205 |
|
|
|
206 |
## License
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
210 |
|
211 |
## References
|
212 |
* [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
|
213 |
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)
|
214 |
|
|
|
|
|
215 |
## Community
|
216 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
217 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
15 |
|
16 |
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
|
17 |
|
18 |
+
This model is an implementation of YOLOv8-Segmentation found [here]({source_repo}).
|
19 |
This repository provides scripts to run YOLOv8-Segmentation on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/yolov8_seg).
|
|
|
31 |
- Model size: 13.2 MB
|
32 |
- Number of output classes: 80
|
33 |
|
34 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
+
|---|---|---|---|---|---|---|---|---|
|
36 |
+
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 6.541 ms | 4 - 6 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
|
37 |
+
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 6.409 ms | 4 - 14 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so) |
|
38 |
+
| YOLOv8-Segmentation | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.616 ms | 13 - 22 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
|
39 |
+
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.861 ms | 3 - 112 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
|
40 |
+
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 4.775 ms | 5 - 62 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so) |
|
41 |
+
| YOLOv8-Segmentation | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 5.228 ms | 18 - 133 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
|
42 |
+
| YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 6.414 ms | 0 - 19 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
|
43 |
+
| YOLOv8-Segmentation | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 6.283 ms | 5 - 6 MB | FP16 | NPU | Use Export Script |
|
44 |
+
| YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 6.446 ms | 0 - 200 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
|
45 |
+
| YOLOv8-Segmentation | SA8255 (Proxy) | SA8255P Proxy | QNN | 6.278 ms | 5 - 10 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| YOLOv8-Segmentation | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 6.49 ms | 4 - 7 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
|
47 |
+
| YOLOv8-Segmentation | SA8775 (Proxy) | SA8775P Proxy | QNN | 6.277 ms | 5 - 12 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 6.533 ms | 4 - 14 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
|
49 |
+
| YOLOv8-Segmentation | SA8650 (Proxy) | SA8650P Proxy | QNN | 6.38 ms | 5 - 6 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 9.61 ms | 5 - 103 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
|
51 |
+
| YOLOv8-Segmentation | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 9.155 ms | 5 - 44 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.508 ms | 4 - 75 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite) |
|
53 |
+
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.685 ms | 5 - 57 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| YOLOv8-Segmentation | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.821 ms | 0 - 71 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
|
55 |
+
| YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 7.215 ms | 5 - 5 MB | FP16 | NPU | Use Export Script |
|
56 |
+
| YOLOv8-Segmentation | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.647 ms | 17 - 17 MB | FP16 | NPU | [YOLOv8-Segmentation.onnx](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.onnx) |
|
57 |
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
## Installation
|
62 |
|
|
|
112 |
```bash
|
113 |
python -m qai_hub_models.models.yolov8_seg.export
|
114 |
```
|
|
|
115 |
```
|
116 |
+
Profiling Results
|
117 |
+
------------------------------------------------------------
|
118 |
+
YOLOv8-Segmentation
|
119 |
+
Device : Samsung Galaxy S23 (13)
|
120 |
+
Runtime : TFLITE
|
121 |
+
Estimated inference time (ms) : 6.5
|
122 |
+
Estimated peak memory usage (MB): [4, 6]
|
123 |
+
Total # Ops : 338
|
124 |
+
Compute Unit(s) : NPU (338 ops)
|
125 |
```
|
126 |
|
127 |
|
|
|
220 |
Get more details on YOLOv8-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_seg).
|
221 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
222 |
|
223 |
+
|
224 |
## License
|
225 |
+
* The license for the original implementation of YOLOv8-Segmentation can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
226 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
|
227 |
+
|
228 |
+
|
229 |
|
230 |
## References
|
231 |
* [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/)
|
232 |
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment)
|
233 |
|
234 |
+
|
235 |
+
|
236 |
## Community
|
237 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
238 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|