File size: 5,047 Bytes
98aed02
 
e9ab71b
 
98aed02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: mit
library_name: py-feat
pipeline_tag: image-feature-extraction
---

# svm_au

## Model Description
svm_au combines histogram of oriented gradient feature extraction with a linear support vector machine to predict facial action units from single frame images. 

## Model Details
- **Model Type**: Support Vector Machine (SVM)
- **Framework**: sklearn

## Model Sources
- **Repository**: [GitHub Repository](https://github.com/cosanlab/py-feat)
- **Paper**: [Py-feat: Python facial expression analysis toolbox](https://link.springer.com/article/10.1007/s42761-023-00191-4)

## Citation
If you use the svm_au model in your research or application, please cite the following paper:

Cheong, J.H., Jolly, E., Xie, T. et al. Py-Feat: Python Facial Expression Analysis Toolbox. Affec Sci 4, 781–796 (2023). https://doi.org/10.1007/s42761-023-00191-4

```
@article{cheong2023py,
  title={Py-feat: Python facial expression analysis toolbox},
  author={Cheong, Jin Hyun and Jolly, Eshin and Xie, Tiankang and Byrne, Sophie and Kenney, Matthew and Chang, Luke J},
  journal={Affective Science},
  volume={4},
  number={4},
  pages={781--796},
  year={2023},
  publisher={Springer}
}
```

## Example Useage

```python
import numpy as np
from skops.io import dump, load, get_untrusted_types
from huggingface_hub import hf_hub_download

class SVMClassifier:
    def __init__(self) -> None:
        self.weights_loaded = False
        
    def load_weights(self, scaler_upper=None, pca_model_upper=None, scaler_lower=None, pca_model_lower=None, scaler_full=None, pca_model_full=None, classifiers=None):
        self.scaler_upper = scaler_upper
        self.pca_model_upper = pca_model_upper
        self.scaler_lower = scaler_lower
        self.pca_model_lower = pca_model_lower
        self.scaler_full = scaler_full
        self.pca_model_full = pca_model_full
        self.classifiers = classifiers
        self.weights_loaded = True

    def pca_transform(self, frame, scaler, pca_model, landmarks):
        if not self.weights_loaded:
            raise ValueError('Need to load weights before running pca_transform')
        else:
            transformed_frame = pca_model.transform(scaler.transform(frame))
            return np.concatenate((transformed_frame, landmarks), axis=1)      

    def detect_au(self, frame, landmarks):
        """
        Note that here frame is represented by hogs
        """
        if not self.weights_loaded:
            raise ValueError('Need to load weights before running detect_au')
        else:
            landmarks = np.concatenate(landmarks)
            landmarks = landmarks.reshape(-1, landmarks.shape[1] * landmarks.shape[2])
    
            pca_transformed_upper = self.pca_transform(frame, self.scaler_upper, self.pca_model_upper, landmarks)
            pca_transformed_lower = self.pca_transform(frame, self.scaler_lower, self.pca_model_lower, landmarks)
            pca_transformed_full = self.pca_transform(frame, self.scaler_full, self.pca_model_full, landmarks)
            
            aus_list = sorted(self.classifiers.keys(), key=lambda x: int(x[2::]))
    
            pred_aus = []
            for keys in aus_list:
                if keys in ["AU1", "AU4", "AU6"]:
                    au_pred = self.classifiers[keys].predict(pca_transformed_upper)
                elif keys in ["AU11", "AU12", "AU17"]:
                    au_pred = self.classifiers[keys].predict(pca_transformed_lower)
                elif keys in [
                    "AU2",
                    "AU5",
                    "AU7",
                    "AU9",
                    "AU10",
                    "AU14",
                    "AU15",
                    "AU20",
                    "AU23",
                    "AU24",
                    "AU25",
                    "AU26",
                    "AU28",
                    "AU43",
                ]:
                    au_pred = self.classifiers[keys].predict(pca_transformed_full)
                else:
                    raise ValueError("unknown AU detected")
    
                pred_aus.append(au_pred)
            pred_aus = np.array(pred_aus).T
            return pred_aus          

# Load model and weights
au_model = SVMClassifier()
model_path = hf_hub_download(repo_id="py-feat/svm_au", filename="svm_au_classifier.skops")
unknown_types = get_untrusted_types(file=model_path)
loaded_model = load(model_path, trusted=unknown_types)
au_model.load_weights(scaler_upper = loaded_model.scaler_upper, 
                      pca_model_upper = loaded_model.pca_model_upper,
                      scaler_lower = loaded_model.scaler_lower, 
                      pca_model_lower = loaded_model.scaler_full, 
                      pca_model_full=loaded_model.pca_model_full, 
                      classifiers=loaded_model.classifiers)

# Test model
frame = "path/to/your/test_image.jpg"  # Replace with your loaded image
landmarks = np.array([...])  # Replace with your landmarks data
pred = au_model.detect_au(frame, landmarks)
print(pred)

```