File size: 5,047 Bytes
98aed02 e9ab71b 98aed02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
license: mit
library_name: py-feat
pipeline_tag: image-feature-extraction
---
# svm_au
## Model Description
svm_au combines histogram of oriented gradient feature extraction with a linear support vector machine to predict facial action units from single frame images.
## Model Details
- **Model Type**: Support Vector Machine (SVM)
- **Framework**: sklearn
## Model Sources
- **Repository**: [GitHub Repository](https://github.com/cosanlab/py-feat)
- **Paper**: [Py-feat: Python facial expression analysis toolbox](https://link.springer.com/article/10.1007/s42761-023-00191-4)
## Citation
If you use the svm_au model in your research or application, please cite the following paper:
Cheong, J.H., Jolly, E., Xie, T. et al. Py-Feat: Python Facial Expression Analysis Toolbox. Affec Sci 4, 781–796 (2023). https://doi.org/10.1007/s42761-023-00191-4
```
@article{cheong2023py,
title={Py-feat: Python facial expression analysis toolbox},
author={Cheong, Jin Hyun and Jolly, Eshin and Xie, Tiankang and Byrne, Sophie and Kenney, Matthew and Chang, Luke J},
journal={Affective Science},
volume={4},
number={4},
pages={781--796},
year={2023},
publisher={Springer}
}
```
## Example Useage
```python
import numpy as np
from skops.io import dump, load, get_untrusted_types
from huggingface_hub import hf_hub_download
class SVMClassifier:
def __init__(self) -> None:
self.weights_loaded = False
def load_weights(self, scaler_upper=None, pca_model_upper=None, scaler_lower=None, pca_model_lower=None, scaler_full=None, pca_model_full=None, classifiers=None):
self.scaler_upper = scaler_upper
self.pca_model_upper = pca_model_upper
self.scaler_lower = scaler_lower
self.pca_model_lower = pca_model_lower
self.scaler_full = scaler_full
self.pca_model_full = pca_model_full
self.classifiers = classifiers
self.weights_loaded = True
def pca_transform(self, frame, scaler, pca_model, landmarks):
if not self.weights_loaded:
raise ValueError('Need to load weights before running pca_transform')
else:
transformed_frame = pca_model.transform(scaler.transform(frame))
return np.concatenate((transformed_frame, landmarks), axis=1)
def detect_au(self, frame, landmarks):
"""
Note that here frame is represented by hogs
"""
if not self.weights_loaded:
raise ValueError('Need to load weights before running detect_au')
else:
landmarks = np.concatenate(landmarks)
landmarks = landmarks.reshape(-1, landmarks.shape[1] * landmarks.shape[2])
pca_transformed_upper = self.pca_transform(frame, self.scaler_upper, self.pca_model_upper, landmarks)
pca_transformed_lower = self.pca_transform(frame, self.scaler_lower, self.pca_model_lower, landmarks)
pca_transformed_full = self.pca_transform(frame, self.scaler_full, self.pca_model_full, landmarks)
aus_list = sorted(self.classifiers.keys(), key=lambda x: int(x[2::]))
pred_aus = []
for keys in aus_list:
if keys in ["AU1", "AU4", "AU6"]:
au_pred = self.classifiers[keys].predict(pca_transformed_upper)
elif keys in ["AU11", "AU12", "AU17"]:
au_pred = self.classifiers[keys].predict(pca_transformed_lower)
elif keys in [
"AU2",
"AU5",
"AU7",
"AU9",
"AU10",
"AU14",
"AU15",
"AU20",
"AU23",
"AU24",
"AU25",
"AU26",
"AU28",
"AU43",
]:
au_pred = self.classifiers[keys].predict(pca_transformed_full)
else:
raise ValueError("unknown AU detected")
pred_aus.append(au_pred)
pred_aus = np.array(pred_aus).T
return pred_aus
# Load model and weights
au_model = SVMClassifier()
model_path = hf_hub_download(repo_id="py-feat/svm_au", filename="svm_au_classifier.skops")
unknown_types = get_untrusted_types(file=model_path)
loaded_model = load(model_path, trusted=unknown_types)
au_model.load_weights(scaler_upper = loaded_model.scaler_upper,
pca_model_upper = loaded_model.pca_model_upper,
scaler_lower = loaded_model.scaler_lower,
pca_model_lower = loaded_model.scaler_full,
pca_model_full=loaded_model.pca_model_full,
classifiers=loaded_model.classifiers)
# Test model
frame = "path/to/your/test_image.jpg" # Replace with your loaded image
landmarks = np.array([...]) # Replace with your landmarks data
pred = au_model.detect_au(frame, landmarks)
print(pred)
```
|