import torch import torch.nn as nn import torch.nn.functional as F from attention import SelfAttention, CrossAttention class TimeEmbedding(nn.Module): def __init__(self, n_embd): super().__init__() self.linear_1 = nn.Linear(n_embd, 4 * n_embd) self.linear_2 = nn.Linear(4 * n_embd, 4 * n_embd) def forward(self, x): # x: (1, 320) # (1, 320) -> (1, 1280) x = self.linear_1(x) # (1, 1280) -> (1, 1280) x = F.silu(x) # (1, 1280) -> (1, 1280) x = self.linear_2(x) return x class UNET_ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, n_time=1280): super().__init__() self.groupnorm_feature = nn.GroupNorm(32, in_channels) self.conv_feature = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.linear_time = nn.Linear(n_time, out_channels) self.groupnorm_merged = nn.GroupNorm(32, out_channels) self.conv_merged = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) if in_channels == out_channels: self.residual_layer = nn.Identity() else: self.residual_layer = nn.Conv2d(in_channels, out_channels, kernel_size=1, padding=0) def forward(self, feature, time): # feature: (Batch_Size, In_Channels, Height, Width) # time: (1, 1280) residue = feature # (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, In_Channels, Height, Width) feature = self.groupnorm_feature(feature) # (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, In_Channels, Height, Width) feature = F.silu(feature) # (Batch_Size, In_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width) feature = self.conv_feature(feature) # (1, 1280) -> (1, 1280) time = F.silu(time) # (1, 1280) -> (1, Out_Channels) time = self.linear_time(time) # Add width and height dimension to time. # (Batch_Size, Out_Channels, Height, Width) + (1, Out_Channels, 1, 1) -> (Batch_Size, Out_Channels, Height, Width) merged = feature + time.unsqueeze(-1).unsqueeze(-1) # (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width) merged = self.groupnorm_merged(merged) # (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width) merged = F.silu(merged) # (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width) merged = self.conv_merged(merged) # (Batch_Size, Out_Channels, Height, Width) + (Batch_Size, Out_Channels, Height, Width) -> (Batch_Size, Out_Channels, Height, Width) return merged + self.residual_layer(residue) class UNET_AttentionBlock(nn.Module): def __init__(self, n_head: int, n_embd: int, d_context=768): super().__init__() channels = n_head * n_embd self.groupnorm = nn.GroupNorm(32, channels, eps=1e-6) self.conv_input = nn.Conv2d(channels, channels, kernel_size=1, padding=0) self.layernorm_1 = nn.LayerNorm(channels) self.attention_1 = SelfAttention(n_head, channels, in_proj_bias=False) self.layernorm_2 = nn.LayerNorm(channels) self.attention_2 = CrossAttention(n_head, channels, d_context, in_proj_bias=False) self.layernorm_3 = nn.LayerNorm(channels) self.linear_geglu_1 = nn.Linear(channels, 4 * channels * 2) self.linear_geglu_2 = nn.Linear(4 * channels, channels) self.conv_output = nn.Conv2d(channels, channels, kernel_size=1, padding=0) def forward(self, x, context): # x: (Batch_Size, Features, Height, Width) # context: (Batch_Size, Seq_Len, Dim) residue_long = x # (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width) x = self.groupnorm(x) # (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width) x = self.conv_input(x) n, c, h, w = x.shape # (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height * Width) x = x.view((n, c, h * w)) # (Batch_Size, Features, Height * Width) -> (Batch_Size, Height * Width, Features) x = x.transpose(-1, -2) # Normalization + Self-Attention with skip connection # (Batch_Size, Height * Width, Features) residue_short = x # (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x = self.layernorm_1(x) # (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x = self.attention_1(x) # (Batch_Size, Height * Width, Features) + (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x += residue_short # (Batch_Size, Height * Width, Features) residue_short = x # Normalization + Cross-Attention with skip connection # (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x = self.layernorm_2(x) # (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x = self.attention_2(x, context) # (Batch_Size, Height * Width, Features) + (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x += residue_short # (Batch_Size, Height * Width, Features) residue_short = x # Normalization + FFN with GeGLU and skip connection # (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x = self.layernorm_3(x) # GeGLU as implemented in the original code: https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/attention.py#L37C10-L37C10 # (Batch_Size, Height * Width, Features) -> two tensors of shape (Batch_Size, Height * Width, Features * 4) x, gate = self.linear_geglu_1(x).chunk(2, dim=-1) # Element-wise product: (Batch_Size, Height * Width, Features * 4) * (Batch_Size, Height * Width, Features * 4) -> (Batch_Size, Height * Width, Features * 4) x = x * F.gelu(gate) # (Batch_Size, Height * Width, Features * 4) -> (Batch_Size, Height * Width, Features) x = self.linear_geglu_2(x) # (Batch_Size, Height * Width, Features) + (Batch_Size, Height * Width, Features) -> (Batch_Size, Height * Width, Features) x += residue_short # (Batch_Size, Height * Width, Features) -> (Batch_Size, Features, Height * Width) x = x.transpose(-1, -2) # (Batch_Size, Features, Height * Width) -> (Batch_Size, Features, Height, Width) x = x.view((n, c, h, w)) # Final skip connection between initial input and output of the block # (Batch_Size, Features, Height, Width) + (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height, Width) return self.conv_output(x) + residue_long class Upsample(nn.Module): def __init__(self, channels): super().__init__() self.conv = nn.Conv2d(channels, channels, kernel_size=3, padding=1) def forward(self, x): # (Batch_Size, Features, Height, Width) -> (Batch_Size, Features, Height * 2, Width * 2) x = F.interpolate(x, scale_factor=2, mode='nearest') return self.conv(x) class SwitchSequential(nn.Sequential): def forward(self, x, context, time): for layer in self: if isinstance(layer, UNET_AttentionBlock): x = layer(x, context) elif isinstance(layer, UNET_ResidualBlock): x = layer(x, time) else: x = layer(x) return x class UNET(nn.Module): def __init__(self): super().__init__() self.encoders = nn.ModuleList([ # (Batch_Size, 4, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(nn.Conv2d(4, 320, kernel_size=3, padding=1)), # (Batch_Size, 320, Height / 8, Width / 8) -> # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)), # (Batch_Size, 320, Height / 8, Width / 8) -> # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(320, 320), UNET_AttentionBlock(8, 40)), # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 16, Width / 16) SwitchSequential(nn.Conv2d(320, 320, kernel_size=3, stride=2, padding=1)), # (Batch_Size, 320, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(320, 640), UNET_AttentionBlock(8, 80)), # (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(640, 640), UNET_AttentionBlock(8, 80)), # (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 32, Width / 32) SwitchSequential(nn.Conv2d(640, 640, kernel_size=3, stride=2, padding=1)), # (Batch_Size, 640, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(640, 1280), UNET_AttentionBlock(8, 160)), # (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(1280, 1280), UNET_AttentionBlock(8, 160)), # (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 64, Width / 64) SwitchSequential(nn.Conv2d(1280, 1280, kernel_size=3, stride=2, padding=1)), # (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) SwitchSequential(UNET_ResidualBlock(1280, 1280)), # (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) SwitchSequential(UNET_ResidualBlock(1280, 1280)), ]) self.bottleneck = SwitchSequential( # (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) UNET_ResidualBlock(1280, 1280), # (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) UNET_AttentionBlock(8, 160), # (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) UNET_ResidualBlock(1280, 1280), ) self.decoders = nn.ModuleList([ # (Batch_Size, 2560, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) SwitchSequential(UNET_ResidualBlock(2560, 1280)), # (Batch_Size, 2560, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) SwitchSequential(UNET_ResidualBlock(2560, 1280)), # (Batch_Size, 2560, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 64, Width / 64) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(2560, 1280), Upsample(1280)), # (Batch_Size, 2560, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)), # (Batch_Size, 2560, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) SwitchSequential(UNET_ResidualBlock(2560, 1280), UNET_AttentionBlock(8, 160)), # (Batch_Size, 1920, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 32, Width / 32) -> (Batch_Size, 1280, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(1920, 1280), UNET_AttentionBlock(8, 160), Upsample(1280)), # (Batch_Size, 1920, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(1920, 640), UNET_AttentionBlock(8, 80)), # (Batch_Size, 1280, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) SwitchSequential(UNET_ResidualBlock(1280, 640), UNET_AttentionBlock(8, 80)), # (Batch_Size, 960, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 16, Width / 16) -> (Batch_Size, 640, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(960, 640), UNET_AttentionBlock(8, 80), Upsample(640)), # (Batch_Size, 960, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(960, 320), UNET_AttentionBlock(8, 40)), # (Batch_Size, 640, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)), # (Batch_Size, 640, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) SwitchSequential(UNET_ResidualBlock(640, 320), UNET_AttentionBlock(8, 40)), ]) def forward(self, x, context, time): # x: (Batch_Size, 4, Height / 8, Width / 8) # context: (Batch_Size, Seq_Len, Dim) # time: (1, 1280) skip_connections = [] for layers in self.encoders: x = layers(x, context, time) skip_connections.append(x) x = self.bottleneck(x, context, time) for layers in self.decoders: # Since we always concat with the skip connection of the encoder, the number of features increases before being sent to the decoder's layer x = torch.cat((x, skip_connections.pop()), dim=1) x = layers(x, context, time) return x class UNET_OutputLayer(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.groupnorm = nn.GroupNorm(32, in_channels) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) def forward(self, x): # x: (Batch_Size, 320, Height / 8, Width / 8) # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) x = self.groupnorm(x) # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 320, Height / 8, Width / 8) x = F.silu(x) # (Batch_Size, 320, Height / 8, Width / 8) -> (Batch_Size, 4, Height / 8, Width / 8) x = self.conv(x) # (Batch_Size, 4, Height / 8, Width / 8) return x class Diffusion(nn.Module): def __init__(self): super().__init__() self.time_embedding = TimeEmbedding(320) self.unet = UNET() self.final = UNET_OutputLayer(320, 4) def forward(self, latent, context, time): # latent: (Batch_Size, 4, Height / 8, Width / 8) # context: (Batch_Size, Seq_Len, Dim) # time: (1, 320) # (1, 320) -> (1, 1280) time = self.time_embedding(time) # (Batch, 4, Height / 8, Width / 8) -> (Batch, 320, Height / 8, Width / 8) output = self.unet(latent, context, time) # (Batch, 320, Height / 8, Width / 8) -> (Batch, 4, Height / 8, Width / 8) output = self.final(output) # (Batch, 4, Height / 8, Width / 8) return output