File size: 2,418 Bytes
f07aa9f 0b8260a a26d6ef 1eb3cc9 a26d6ef 1eb3cc9 92872dd f07aa9f a26d6ef 1eb3cc9 a26d6ef 0b8260a a26d6ef 0b8260a a26d6ef 1eb3cc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license:
- bsd-3-clause
- apache-2.0
tags:
- generated_from_trainer
datasets:
- pszemraj/scientific_lay_summarisation-elife-norm
metrics:
- rouge
model-index:
- name: >-
long-t5-tglobal-xl-16384-book-summary-scientific_lay_summarisation-elife-norm-16384-summ-v1
results:
- task:
name: Summarization
type: summarization
dataset:
name: pszemraj/scientific_lay_summarisation-elife-norm
type: pszemraj/scientific_lay_summarisation-elife-norm
split: validation
metrics:
- name: Rouge1
type: rouge
value: 47.4591
language:
- en
library_name: transformers
inference: False
---
# long-t5-tglobal-xl-16384-booksci-summary-v1
This model is a fine-tuned version of [pszemraj/long-t5-tglobal-xl-16384-book-summary](https://huggingface.co/pszemraj/long-t5-tglobal-xl-16384-book-summary) on the pszemraj/scientific_lay_summarisation-elife-norm dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7518
- Rouge1: 47.4591
- Rouge2: 12.7287
- Rougel: 21.5549
- Rougelsum: 44.8709
- Gen Len: 384.39
## Model description
An experiment of further fine-tuning a booksum model on a different dataset. Compare to either the starting checkpoint (_linked above_) or to the [variant only fine-tuned on the scientific lay summaries](https://huggingface.co/pszemraj/long-t5-tglobal-xl-sci-simplify-elife).
## Intended uses & limitations
More information needed
## Training and evaluation data
the pszemraj/scientific_lay_summarisation-elife-norm dataset, input 16384 tokens then truncate, output 1024 tokens then truncate.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 878
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.9629 | 1.0 | 543 | 1.7637 | 46.6926 | 12.4769 | 21.4364 | 44.4329 | 381.23 |
| 1.8555 | 2.0 | 1086 | 1.7518 | 47.4591 | 12.7287 | 21.5549 | 44.8709 | 384.39 | |