--- license: apache-2.0 base_model: google/long-t5-tglobal-base tags: - generated_from_trainer - synthsumm metrics: - rouge datasets: - pszemraj/synthsumm language: - en pipeline_tag: summarization --- # long-t5-tglobal-base-synthsumm_direct Fine-tuned on a synthetic dataset of curated long-context text and `GPT-3.5-turbo-1106` summaries spanning multiple domains + "random" long-context examples from pretraining datasets - Note: this model has **not** been fine-tuned on any other summarization datasets, just the `synthsumm` data Try it in [gradio demo](https://huggingface.co/spaces/pszemraj/document-summarization) | [.md with example outputs](https://huggingface.co/pszemraj/long-t5-tglobal-base-synthsumm_direct/blob/main/evals-outputs/GAUNTLET.md) (gauntlet) ## Model description This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4378 - Rouge1: 48.0918 - Rouge2: 21.2531 - Rougel: 34.4307 - Rougelsum: 43.0271 - Gen Len: 84.5231 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 26605 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.9183 | 0.38 | 125 | 1.5762 | 38.7221 | 15.0873 | 28.3123 | 34.9655 | 129.2154 | | 1.8815 | 0.77 | 250 | 1.5230 | 44.3531 | 17.9384 | 31.7417 | 39.5563 | 87.3538 | | 1.7264 | 1.15 | 375 | 1.4735 | 45.7781 | 20.102 | 33.329 | 41.4737 | 101.9231 | | 1.8545 | 1.54 | 500 | 1.4505 | 47.0134 | 20.6159 | 33.6118 | 41.6579 | 88.2308 | | 1.7444 | 1.92 | 625 | 1.4378 | 48.0918 | 21.2531 | 34.4307 | 43.0271 | 84.5231 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0 - Datasets 2.15.0 - Tokenizers 0.15.0