- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ll2022-05-09-lunar3.zip +3 -0
- ll2022-05-09-lunar3/_stable_baselines3_version +1 -0
- ll2022-05-09-lunar3/data +94 -0
- ll2022-05-09-lunar3/policy.optimizer.pth +3 -0
- ll2022-05-09-lunar3/policy.pth +3 -0
- ll2022-05-09-lunar3/pytorch_variables.pth +3 -0
- ll2022-05-09-lunar3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 262.07 +/- 20.63
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f02322ba430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f02322ba4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f02322ba550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f02322ba5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f02322ba670>", "forward": "<function ActorCriticPolicy.forward at 0x7f02322ba700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f02322ba790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f02322ba820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f02322ba8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f02322ba940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f02322ba9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f02322bc640>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652116697.4259617, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNp9DySnqw/bZxsPtpEnL5SzS09fuICPgAAAAAAAAAAYCw0Pu1e1j5zKRi+BHZ0vkQDtjsFQra9AAAAAAAAAABAyJi9C4bKPfdMnz0RZku+W6wqPVuC1bwAAAAAAAAAAPNbD77Haqs/qN9cvqR7lL722Uq+YrYjvQAAAAAAAAAAZta0vLSqyj415/o8CYSKvl0OODzFxtu8AAAAAAAAAACA1Em+T99aP3KlGD59N5++mZ2bvY1cAT0AAAAAAAAAAAaCAr5JWIM/zEOqPTB9mL4mzbi9AiHaPQAAAAAAAAAARmIxPhbrvD5bMJW+ezdXvjc+H70NLmy9AAAAAAAAAAAAXHY9cdREuwOUdr3f7qK9Bhn5u+PGXL8AAIA/AACAP8Bglz2OGJc/OoHKPaGbzr4woKE94scqvQAAAAAAAAAAU7FFPhNxVj+dC4C9xPaGvm12jD0KmyW9AAAAAAAAAAAzlBy9H8LFu2gicbyZ95E81JwUvRC+dj0AAIA/AACAPwYeWj5KUFU/esTJPYHykb4/EyM+ck2LvQAAAAAAAAAAAIrOPYeaLT6ptSO+epVQvjVTCL3tOB07AAAAAAAAAADmFh49FFigur2sJ7YA1liwpYgRuc4yPTUAAIA/AACAP81v/b1k99g+5awHPmqWgL6QZkQ97ihOvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFoVdFD0DcECUhpRSlIwBbJRNQQGMAXSUR0CIyzl9Sde6dX2UKGgGaAloD0MIA9AoXfoQbUCUhpRSlGgVTRkBaBZHQIjLqEYfnwJ1fZQoaAZoCWgPQwijkGRWr2lxQJSGlFKUaBVNHwFoFkdAiMyo4uK4x3V9lChoBmgJaA9DCKsi3GTUqnJAlIaUUpRoFU0mAWgWR0CIzSW1twaSdX2UKGgGaAloD0MIFVYqqKgjcECUhpRSlGgVTSsBaBZHQIjQyeZof0V1fZQoaAZoCWgPQwjEJFzI499xQJSGlFKUaBVL+WgWR0CI1DeQ+2VndX2UKGgGaAloD0MIvoi2Y2pGcECUhpRSlGgVTQYBaBZHQIjUgDYAbQ11fZQoaAZoCWgPQwgUBmUaTaFxQJSGlFKUaBVNEwFoFkdAiNTHEVFhHHV9lChoBmgJaA9DCB4aFqOum25AlIaUUpRoFU0dAWgWR0CI1gkvboKVdX2UKGgGaAloD0MI24XmOg2BcUCUhpRSlGgVTU8BaBZHQIjYQGbCrLh1fZQoaAZoCWgPQwiwxtl0BDBLQJSGlFKUaBVL1GgWR0CI2LsUqQRxdX2UKGgGaAloD0MIomDGFGw3ckCUhpRSlGgVTUcBaBZHQIjY6V6eGwl1fZQoaAZoCWgPQwg98gcDj6RwQJSGlFKUaBVNGQFoFkdAiNkFbFCLM3V9lChoBmgJaA9DCN+kaVD0oHBAlIaUUpRoFU0fAWgWR0CI2wuA7PpqdX2UKGgGaAloD0MIu+8YHvsJcUCUhpRSlGgVTS8BaBZHQIjbQ0Mw1zh1fZQoaAZoCWgPQwiTOgFNBKpuQJSGlFKUaBVNKgFoFkdAiNueKCQLeHV9lChoBmgJaA9DCF8oYDsYS21AlIaUUpRoFU1gAWgWR0CI3UX7+DODdX2UKGgGaAloD0MINQnekAb8cECUhpRSlGgVTUUBaBZHQIjderwOOKh1fZQoaAZoCWgPQwiEY5Y9iU5wQJSGlFKUaBVNRQFoFkdAiN8toakylHV9lChoBmgJaA9DCBe2ZiuvNnBAlIaUUpRoFU08AWgWR0CI4s/mDDjzdX2UKGgGaAloD0MIZRwj2SOFa0CUhpRSlGgVTWgDaBZHQIjjAksz2vl1fZQoaAZoCWgPQwhUpwNZT7ttQJSGlFKUaBVNLwFoFkdAiOVI60Y0mHV9lChoBmgJaA9DCLkcr0D09W9AlIaUUpRoFU01AWgWR0CI5jN0NjLCdX2UKGgGaAloD0MIQrRWtLkfckCUhpRSlGgVTUgBaBZHQIjnGMju8bt1fZQoaAZoCWgPQwikGvZ74mlwQJSGlFKUaBVNOgFoFkdAiOfH7Hhjv3V9lChoBmgJaA9DCCkiwypeZm9AlIaUUpRoFU0tAWgWR0CI6bgKF7D3dX2UKGgGaAloD0MI5BBxc6pSb0CUhpRSlGgVTS0BaBZHQIjp8NOM2m51fZQoaAZoCWgPQwgCmggb3iJwQJSGlFKUaBVNNQFoFkdAiOqC2UjcEnV9lChoBmgJaA9DCJoLXB7rpG9AlIaUUpRoFU0SAWgWR0CI6tSVnmJWdX2UKGgGaAloD0MIQWK7ewC/cECUhpRSlGgVTTIBaBZHQIjsNNet0V91fZQoaAZoCWgPQwiQgxJm2iJvQJSGlFKUaBVNPgFoFkdAiO1c2rGR3nV9lChoBmgJaA9DCFdbsb/sr25AlIaUUpRoFU0fAWgWR0CI7aeU6gdwdX2UKGgGaAloD0MIp5NsdXnqcECUhpRSlGgVTQcBaBZHQIjuGrOqvNh1fZQoaAZoCWgPQwjpDfeRG4hxQJSGlFKUaBVNMQFoFkdAiO5JFb3XZ3V9lChoBmgJaA9DCAjIl1BBsGNAlIaUUpRoFU3dAWgWR0CI8h9RaX8gdX2UKGgGaAloD0MI+OC1S9sNcECUhpRSlGgVTSEBaBZHQIjynA44p+d1fZQoaAZoCWgPQwizKOyi6EhvQJSGlFKUaBVNIQFoFkdAiPLFoDgZTHV9lChoBmgJaA9DCO2ePCyUBHFAlIaUUpRoFU01AWgWR0CI9fDZ13dLdX2UKGgGaAloD0MIw6BMo8kObUCUhpRSlGgVTTMBaBZHQIj2tSwW30B1fZQoaAZoCWgPQwi+FB40OxRvQJSGlFKUaBVNJQFoFkdAiPdvczqKQHV9lChoBmgJaA9DCPRuLCgM+XFAlIaUUpRoFU0XAWgWR0CI+He2uxKQdX2UKGgGaAloD0MI7uh/uRb8cECUhpRSlGgVTQsBaBZHQIj4h99c8kl1fZQoaAZoCWgPQwgLKT+p9stsQJSGlFKUaBVNTgFoFkdAiPkegDifhHV9lChoBmgJaA9DCFBQilauznJAlIaUUpRoFU0+AWgWR0CI+p91loUSdX2UKGgGaAloD0MIBmhbzXpMcUCUhpRSlGgVTRcBaBZHQIj8JXEIgNh1fZQoaAZoCWgPQwjVz5uKFJtwQJSGlFKUaBVNTwFoFkdAiPxnKfWc0HV9lChoBmgJaA9DCEeP39u0XHBAlIaUUpRoFU0bAWgWR0CI/KdTYNAkdX2UKGgGaAloD0MI1c+bilTvb0CUhpRSlGgVTSEBaBZHQIkbvTd+G491fZQoaAZoCWgPQwimuoCX2W9wQJSGlFKUaBVNLAFoFkdAiRxp7CzkZXV9lChoBmgJaA9DCNdoOdBDFG5AlIaUUpRoFU0OAWgWR0CJHr+cYqG2dX2UKGgGaAloD0MIFVJ+Uu35cECUhpRSlGgVTRgBaBZHQIkf1XiiqQ11fZQoaAZoCWgPQwgT8kHP5sNvQJSGlFKUaBVNLQFoFkdAiSDA6Mir1nV9lChoBmgJaA9DCAaeew+XWHBAlIaUUpRoFU0RAWgWR0CJIx+HaewtdX2UKGgGaAloD0MI5ZfBGBHpcUCUhpRSlGgVTR8BaBZHQIkjO/nGKht1fZQoaAZoCWgPQwh9s82N6Y5uQJSGlFKUaBVNGAFoFkdAiSQpW3jMmnV9lChoBmgJaA9DCAT/W8kOfmxAlIaUUpRoFU0mAWgWR0CJJfSl3yI6dX2UKGgGaAloD0MIW0OpvYiebkCUhpRSlGgVTSMBaBZHQIkoSwnpjc51fZQoaAZoCWgPQwjFHAQd7VNxQJSGlFKUaBVNQgFoFkdAiShasZHd43V9lChoBmgJaA9DCMzs8xglK3FAlIaUUpRoFU0FAWgWR0CJKLz/6wdKdX2UKGgGaAloD0MIKhkAqngfcECUhpRSlGgVTWIBaBZHQIkpco0ALiN1fZQoaAZoCWgPQwhNSkG3l7RvQJSGlFKUaBVNKwFoFkdAiSonBtUGV3V9lChoBmgJaA9DCHwqpz2lc29AlIaUUpRoFU05AWgWR0CJKxZlnRLLdX2UKGgGaAloD0MIiIOEKB8Fc0CUhpRSlGgVTTsBaBZHQIksNkhA4XJ1fZQoaAZoCWgPQwh2bATitS5xQJSGlFKUaBVNSQFoFkdAiS2qIBRyfnV9lChoBmgJaA9DCIHMzqI3VHJAlIaUUpRoFU0dAWgWR0CJLeG0u14PdX2UKGgGaAloD0MIzF8hc+XjcECUhpRSlGgVTScBaBZHQIkvcrPMSsd1fZQoaAZoCWgPQwhYAb7bPAZyQJSGlFKUaBVNFwFoFkdAiS+Nuk1uSHV9lChoBmgJaA9DCH3rw3ojh25AlIaUUpRoFU0VAWgWR0CJMbXtjTa1dX2UKGgGaAloD0MIeF+VC9WackCUhpRSlGgVTSABaBZHQIkyL1qWTot1fZQoaAZoCWgPQwgsZoS3x45xQJSGlFKUaBVNEwFoFkdAiTJ+g+Qlr3V9lChoBmgJaA9DCFBSYAHMMnFAlIaUUpRoFU0jAWgWR0CJNPppN9H+dX2UKGgGaAloD0MIhPQUOcS8bkCUhpRSlGgVTSgBaBZHQIk3eU8mrsB1fZQoaAZoCWgPQwiQhH07SWpyQJSGlFKUaBVNLwFoFkdAiThgvL5h0HV9lChoBmgJaA9DCMqHoGo0/nBAlIaUUpRoFU0YAWgWR0CJOKuL74zrdX2UKGgGaAloD0MInWNA9nqAckCUhpRSlGgVTT8BaBZHQIk443eenQ91fZQoaAZoCWgPQwj4im69pgZwQJSGlFKUaBVNNQFoFkdAiTlv+fh/AnV9lChoBmgJaA9DCA/W/znM03FAlIaUUpRoFU1IAWgWR0CJPGy/sVtXdX2UKGgGaAloD0MIXXAGf//8cUCUhpRSlGgVTTIBaBZHQIk8fpwCKaZ1fZQoaAZoCWgPQwiVDWsqS4dwQJSGlFKUaBVNIwFoFkdAiT2AMtsen3V9lChoBmgJaA9DCGMOgo4WZ3FAlIaUUpRoFU0OAWgWR0CJPhm/WUbDdX2UKGgGaAloD0MIlpS7z3FGcECUhpRSlGgVTUIBaBZHQIk/CAH3UQV1fZQoaAZoCWgPQwhWvJF55CBcQJSGlFKUaBVN6ANoFkdAiT9bAtWdVnV9lChoBmgJaA9DCGEXRQ88cXFAlIaUUpRoFU0qAWgWR0CJP79AHE/CdX2UKGgGaAloD0MIyXVTymtkb0CUhpRSlGgVTQ0BaBZHQIlAZh+fAbh1fZQoaAZoCWgPQwj1hCUeUIVvQJSGlFKUaBVNFgFoFkdAiUF4d6sySHV9lChoBmgJaA9DCJNWfEMhQ3FAlIaUUpRoFU08AWgWR0CJQwY77sOYdX2UKGgGaAloD0MIT7FqEKY1cECUhpRSlGgVTTMBaBZHQIlFSYmb9ZR1fZQoaAZoCWgPQwi8yW/RybtxQJSGlFKUaBVNCAFoFkdAiUVYfnwG4nV9lChoBmgJaA9DCLsNar91WnBAlIaUUpRoFU0MAWgWR0CJRqO5rgwXdX2UKGgGaAloD0MI/3bZr/tgckCUhpRSlGgVTTEBaBZHQIlIZQJokAx1fZQoaAZoCWgPQwiwPbMkQEFDQJSGlFKUaBVL12gWR0CJSHWy1NQCdX2UKGgGaAloD0MIED0pk5o/bkCUhpRSlGgVTSQBaBZHQIlIy77Kq4p1fZQoaAZoCWgPQwieYWpLnQFwQJSGlFKUaBVNQwFoFkdAiUnZMDfWMHV9lChoBmgJaA9DCC+jWG5panBAlIaUUpRoFU0gAWgWR0CJS1IEr5IpdX2UKGgGaAloD0MIKLaCpiWATUCUhpRSlGgVS+xoFkdAiUtUn5SFXnV9lChoBmgJaA9DCEwceSCyt3FAlIaUUpRoFU0fAWgWR0CJTOY77sOYdX2UKGgGaAloD0MIzgAXZEuqcUCUhpRSlGgVTUMBaBZHQIlNRkZrHlx1fZQoaAZoCWgPQwhYHM786kZxQJSGlFKUaBVNGAFoFkdAiU4Z/0/W2HV9lChoBmgJaA9DCEI+6NksAWxAlIaUUpRoFU0sAWgWR0CJTmtV7x/edX2UKGgGaAloD0MIOfHVjmIwcUCUhpRSlGgVTS8BaBZHQIlP/ivPkaN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.11.0-41-generic-x86_64-with-glibc2.31 #45-Ubuntu SMP Fri Nov 5 11:37:01 UTC 2021", "Python": "3.9.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ll2022-05-09-lunar3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8717dfca051539ccbd7e9d0c36335a6f2b5c8e3e70c9cd611af41f67bdbf217c
|
3 |
+
size 144064
|
ll2022-05-09-lunar3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ll2022-05-09-lunar3/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f02322ba430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f02322ba4c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f02322ba550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f02322ba5e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f02322ba670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f02322ba700>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f02322ba790>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f02322ba820>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f02322ba8b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f02322ba940>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f02322ba9d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f02322bc640>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652116697.4259617,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNp9DySnqw/bZxsPtpEnL5SzS09fuICPgAAAAAAAAAAYCw0Pu1e1j5zKRi+BHZ0vkQDtjsFQra9AAAAAAAAAABAyJi9C4bKPfdMnz0RZku+W6wqPVuC1bwAAAAAAAAAAPNbD77Haqs/qN9cvqR7lL722Uq+YrYjvQAAAAAAAAAAZta0vLSqyj415/o8CYSKvl0OODzFxtu8AAAAAAAAAACA1Em+T99aP3KlGD59N5++mZ2bvY1cAT0AAAAAAAAAAAaCAr5JWIM/zEOqPTB9mL4mzbi9AiHaPQAAAAAAAAAARmIxPhbrvD5bMJW+ezdXvjc+H70NLmy9AAAAAAAAAAAAXHY9cdREuwOUdr3f7qK9Bhn5u+PGXL8AAIA/AACAP8Bglz2OGJc/OoHKPaGbzr4woKE94scqvQAAAAAAAAAAU7FFPhNxVj+dC4C9xPaGvm12jD0KmyW9AAAAAAAAAAAzlBy9H8LFu2gicbyZ95E81JwUvRC+dj0AAIA/AACAPwYeWj5KUFU/esTJPYHykb4/EyM+ck2LvQAAAAAAAAAAAIrOPYeaLT6ptSO+epVQvjVTCL3tOB07AAAAAAAAAADmFh49FFigur2sJ7YA1liwpYgRuc4yPTUAAIA/AACAP81v/b1k99g+5awHPmqWgL6QZkQ97ihOvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFoVdFD0DcECUhpRSlIwBbJRNQQGMAXSUR0CIyzl9Sde6dX2UKGgGaAloD0MIA9AoXfoQbUCUhpRSlGgVTRkBaBZHQIjLqEYfnwJ1fZQoaAZoCWgPQwijkGRWr2lxQJSGlFKUaBVNHwFoFkdAiMyo4uK4x3V9lChoBmgJaA9DCKsi3GTUqnJAlIaUUpRoFU0mAWgWR0CIzSW1twaSdX2UKGgGaAloD0MIFVYqqKgjcECUhpRSlGgVTSsBaBZHQIjQyeZof0V1fZQoaAZoCWgPQwjEJFzI499xQJSGlFKUaBVL+WgWR0CI1DeQ+2VndX2UKGgGaAloD0MIvoi2Y2pGcECUhpRSlGgVTQYBaBZHQIjUgDYAbQ11fZQoaAZoCWgPQwgUBmUaTaFxQJSGlFKUaBVNEwFoFkdAiNTHEVFhHHV9lChoBmgJaA9DCB4aFqOum25AlIaUUpRoFU0dAWgWR0CI1gkvboKVdX2UKGgGaAloD0MI24XmOg2BcUCUhpRSlGgVTU8BaBZHQIjYQGbCrLh1fZQoaAZoCWgPQwiwxtl0BDBLQJSGlFKUaBVL1GgWR0CI2LsUqQRxdX2UKGgGaAloD0MIomDGFGw3ckCUhpRSlGgVTUcBaBZHQIjY6V6eGwl1fZQoaAZoCWgPQwg98gcDj6RwQJSGlFKUaBVNGQFoFkdAiNkFbFCLM3V9lChoBmgJaA9DCN+kaVD0oHBAlIaUUpRoFU0fAWgWR0CI2wuA7PpqdX2UKGgGaAloD0MIu+8YHvsJcUCUhpRSlGgVTS8BaBZHQIjbQ0Mw1zh1fZQoaAZoCWgPQwiTOgFNBKpuQJSGlFKUaBVNKgFoFkdAiNueKCQLeHV9lChoBmgJaA9DCF8oYDsYS21AlIaUUpRoFU1gAWgWR0CI3UX7+DODdX2UKGgGaAloD0MINQnekAb8cECUhpRSlGgVTUUBaBZHQIjderwOOKh1fZQoaAZoCWgPQwiEY5Y9iU5wQJSGlFKUaBVNRQFoFkdAiN8toakylHV9lChoBmgJaA9DCBe2ZiuvNnBAlIaUUpRoFU08AWgWR0CI4s/mDDjzdX2UKGgGaAloD0MIZRwj2SOFa0CUhpRSlGgVTWgDaBZHQIjjAksz2vl1fZQoaAZoCWgPQwhUpwNZT7ttQJSGlFKUaBVNLwFoFkdAiOVI60Y0mHV9lChoBmgJaA9DCLkcr0D09W9AlIaUUpRoFU01AWgWR0CI5jN0NjLCdX2UKGgGaAloD0MIQrRWtLkfckCUhpRSlGgVTUgBaBZHQIjnGMju8bt1fZQoaAZoCWgPQwikGvZ74mlwQJSGlFKUaBVNOgFoFkdAiOfH7Hhjv3V9lChoBmgJaA9DCCkiwypeZm9AlIaUUpRoFU0tAWgWR0CI6bgKF7D3dX2UKGgGaAloD0MI5BBxc6pSb0CUhpRSlGgVTS0BaBZHQIjp8NOM2m51fZQoaAZoCWgPQwgCmggb3iJwQJSGlFKUaBVNNQFoFkdAiOqC2UjcEnV9lChoBmgJaA9DCJoLXB7rpG9AlIaUUpRoFU0SAWgWR0CI6tSVnmJWdX2UKGgGaAloD0MIQWK7ewC/cECUhpRSlGgVTTIBaBZHQIjsNNet0V91fZQoaAZoCWgPQwiQgxJm2iJvQJSGlFKUaBVNPgFoFkdAiO1c2rGR3nV9lChoBmgJaA9DCFdbsb/sr25AlIaUUpRoFU0fAWgWR0CI7aeU6gdwdX2UKGgGaAloD0MIp5NsdXnqcECUhpRSlGgVTQcBaBZHQIjuGrOqvNh1fZQoaAZoCWgPQwjpDfeRG4hxQJSGlFKUaBVNMQFoFkdAiO5JFb3XZ3V9lChoBmgJaA9DCAjIl1BBsGNAlIaUUpRoFU3dAWgWR0CI8h9RaX8gdX2UKGgGaAloD0MI+OC1S9sNcECUhpRSlGgVTSEBaBZHQIjynA44p+d1fZQoaAZoCWgPQwizKOyi6EhvQJSGlFKUaBVNIQFoFkdAiPLFoDgZTHV9lChoBmgJaA9DCO2ePCyUBHFAlIaUUpRoFU01AWgWR0CI9fDZ13dLdX2UKGgGaAloD0MIw6BMo8kObUCUhpRSlGgVTTMBaBZHQIj2tSwW30B1fZQoaAZoCWgPQwi+FB40OxRvQJSGlFKUaBVNJQFoFkdAiPdvczqKQHV9lChoBmgJaA9DCPRuLCgM+XFAlIaUUpRoFU0XAWgWR0CI+He2uxKQdX2UKGgGaAloD0MI7uh/uRb8cECUhpRSlGgVTQsBaBZHQIj4h99c8kl1fZQoaAZoCWgPQwgLKT+p9stsQJSGlFKUaBVNTgFoFkdAiPkegDifhHV9lChoBmgJaA9DCFBQilauznJAlIaUUpRoFU0+AWgWR0CI+p91loUSdX2UKGgGaAloD0MIBmhbzXpMcUCUhpRSlGgVTRcBaBZHQIj8JXEIgNh1fZQoaAZoCWgPQwjVz5uKFJtwQJSGlFKUaBVNTwFoFkdAiPxnKfWc0HV9lChoBmgJaA9DCEeP39u0XHBAlIaUUpRoFU0bAWgWR0CI/KdTYNAkdX2UKGgGaAloD0MI1c+bilTvb0CUhpRSlGgVTSEBaBZHQIkbvTd+G491fZQoaAZoCWgPQwimuoCX2W9wQJSGlFKUaBVNLAFoFkdAiRxp7CzkZXV9lChoBmgJaA9DCNdoOdBDFG5AlIaUUpRoFU0OAWgWR0CJHr+cYqG2dX2UKGgGaAloD0MIFVJ+Uu35cECUhpRSlGgVTRgBaBZHQIkf1XiiqQ11fZQoaAZoCWgPQwgT8kHP5sNvQJSGlFKUaBVNLQFoFkdAiSDA6Mir1nV9lChoBmgJaA9DCAaeew+XWHBAlIaUUpRoFU0RAWgWR0CJIx+HaewtdX2UKGgGaAloD0MI5ZfBGBHpcUCUhpRSlGgVTR8BaBZHQIkjO/nGKht1fZQoaAZoCWgPQwh9s82N6Y5uQJSGlFKUaBVNGAFoFkdAiSQpW3jMmnV9lChoBmgJaA9DCAT/W8kOfmxAlIaUUpRoFU0mAWgWR0CJJfSl3yI6dX2UKGgGaAloD0MIW0OpvYiebkCUhpRSlGgVTSMBaBZHQIkoSwnpjc51fZQoaAZoCWgPQwjFHAQd7VNxQJSGlFKUaBVNQgFoFkdAiShasZHd43V9lChoBmgJaA9DCMzs8xglK3FAlIaUUpRoFU0FAWgWR0CJKLz/6wdKdX2UKGgGaAloD0MIKhkAqngfcECUhpRSlGgVTWIBaBZHQIkpco0ALiN1fZQoaAZoCWgPQwhNSkG3l7RvQJSGlFKUaBVNKwFoFkdAiSonBtUGV3V9lChoBmgJaA9DCHwqpz2lc29AlIaUUpRoFU05AWgWR0CJKxZlnRLLdX2UKGgGaAloD0MIiIOEKB8Fc0CUhpRSlGgVTTsBaBZHQIksNkhA4XJ1fZQoaAZoCWgPQwh2bATitS5xQJSGlFKUaBVNSQFoFkdAiS2qIBRyfnV9lChoBmgJaA9DCIHMzqI3VHJAlIaUUpRoFU0dAWgWR0CJLeG0u14PdX2UKGgGaAloD0MIzF8hc+XjcECUhpRSlGgVTScBaBZHQIkvcrPMSsd1fZQoaAZoCWgPQwhYAb7bPAZyQJSGlFKUaBVNFwFoFkdAiS+Nuk1uSHV9lChoBmgJaA9DCH3rw3ojh25AlIaUUpRoFU0VAWgWR0CJMbXtjTa1dX2UKGgGaAloD0MIeF+VC9WackCUhpRSlGgVTSABaBZHQIkyL1qWTot1fZQoaAZoCWgPQwgsZoS3x45xQJSGlFKUaBVNEwFoFkdAiTJ+g+Qlr3V9lChoBmgJaA9DCFBSYAHMMnFAlIaUUpRoFU0jAWgWR0CJNPppN9H+dX2UKGgGaAloD0MIhPQUOcS8bkCUhpRSlGgVTSgBaBZHQIk3eU8mrsB1fZQoaAZoCWgPQwiQhH07SWpyQJSGlFKUaBVNLwFoFkdAiThgvL5h0HV9lChoBmgJaA9DCMqHoGo0/nBAlIaUUpRoFU0YAWgWR0CJOKuL74zrdX2UKGgGaAloD0MInWNA9nqAckCUhpRSlGgVTT8BaBZHQIk443eenQ91fZQoaAZoCWgPQwj4im69pgZwQJSGlFKUaBVNNQFoFkdAiTlv+fh/AnV9lChoBmgJaA9DCA/W/znM03FAlIaUUpRoFU1IAWgWR0CJPGy/sVtXdX2UKGgGaAloD0MIXXAGf//8cUCUhpRSlGgVTTIBaBZHQIk8fpwCKaZ1fZQoaAZoCWgPQwiVDWsqS4dwQJSGlFKUaBVNIwFoFkdAiT2AMtsen3V9lChoBmgJaA9DCGMOgo4WZ3FAlIaUUpRoFU0OAWgWR0CJPhm/WUbDdX2UKGgGaAloD0MIlpS7z3FGcECUhpRSlGgVTUIBaBZHQIk/CAH3UQV1fZQoaAZoCWgPQwhWvJF55CBcQJSGlFKUaBVN6ANoFkdAiT9bAtWdVnV9lChoBmgJaA9DCGEXRQ88cXFAlIaUUpRoFU0qAWgWR0CJP79AHE/CdX2UKGgGaAloD0MIyXVTymtkb0CUhpRSlGgVTQ0BaBZHQIlAZh+fAbh1fZQoaAZoCWgPQwj1hCUeUIVvQJSGlFKUaBVNFgFoFkdAiUF4d6sySHV9lChoBmgJaA9DCJNWfEMhQ3FAlIaUUpRoFU08AWgWR0CJQwY77sOYdX2UKGgGaAloD0MIT7FqEKY1cECUhpRSlGgVTTMBaBZHQIlFSYmb9ZR1fZQoaAZoCWgPQwi8yW/RybtxQJSGlFKUaBVNCAFoFkdAiUVYfnwG4nV9lChoBmgJaA9DCLsNar91WnBAlIaUUpRoFU0MAWgWR0CJRqO5rgwXdX2UKGgGaAloD0MI/3bZr/tgckCUhpRSlGgVTTEBaBZHQIlIZQJokAx1fZQoaAZoCWgPQwiwPbMkQEFDQJSGlFKUaBVL12gWR0CJSHWy1NQCdX2UKGgGaAloD0MIED0pk5o/bkCUhpRSlGgVTSQBaBZHQIlIy77Kq4p1fZQoaAZoCWgPQwieYWpLnQFwQJSGlFKUaBVNQwFoFkdAiUnZMDfWMHV9lChoBmgJaA9DCC+jWG5panBAlIaUUpRoFU0gAWgWR0CJS1IEr5IpdX2UKGgGaAloD0MIKLaCpiWATUCUhpRSlGgVS+xoFkdAiUtUn5SFXnV9lChoBmgJaA9DCEwceSCyt3FAlIaUUpRoFU0fAWgWR0CJTOY77sOYdX2UKGgGaAloD0MIzgAXZEuqcUCUhpRSlGgVTUMBaBZHQIlNRkZrHlx1fZQoaAZoCWgPQwhYHM786kZxQJSGlFKUaBVNGAFoFkdAiU4Z/0/W2HV9lChoBmgJaA9DCEI+6NksAWxAlIaUUpRoFU0sAWgWR0CJTmtV7x/edX2UKGgGaAloD0MIOfHVjmIwcUCUhpRSlGgVTS8BaBZHQIlP/ivPkaN1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ll2022-05-09-lunar3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5dc8abdbba11f2cbd9235aa3a0745f1be844788580b7fb3a25bd30a11eb5005
|
3 |
+
size 84829
|
ll2022-05-09-lunar3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4369cac54e834dbb3b5e8433df6f44b4e1578a3828ef2906329d84bfd5b1e03
|
3 |
+
size 43201
|
ll2022-05-09-lunar3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ll2022-05-09-lunar3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.11.0-41-generic-x86_64-with-glibc2.31 #45-Ubuntu SMP Fri Nov 5 11:37:01 UTC 2021
|
2 |
+
Python: 3.9.10
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2beb0e44ee08256946bc7050f95911b0495a19ec862997143bd303f32f38ef7f
|
3 |
+
size 224195
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.0742525914548, "std_reward": 20.629899547808186, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T17:31:51.777142"}
|