---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: NYC_SQF_ARR_SVM.pkl
widget:
- structuredData:
ASK_FOR_CONSENT_FLG:
- 1
- 1
- 0
CONSENT_GIVEN_FLG:
- 1
- 0
- 0
FIREARM_FLAG:
- 0
- 0
- 0
FRISKED_FLAG:
- 1
- 1
- 1
ISSUING_OFFICER_RANK:
- 10
- 13
- 9
KNIFE_CUTTER_FLAG:
- 0
- 0
- 0
OTHER_CONTRABAND_FLAG:
- 1
- 0
- 0
OTHER_WEAPON_FLAG:
- 0
- 0
- 0
SEARCHED_FLAG:
- 1
- 0
- 1
STOP_ID:
- 8283
- 4532
- 14787
STOP_LOCATION_PRECINCT:
- 90
- 40
- 106
SUPERVISING_OFFICER_RANK:
- 12
- 7
- 12
SUSPECT_BODY_BUILD_TYPE:
- 2
- 3
- 3
SUSPECT_HEIGHT:
- 5.7
- 5.1
- 5.6
SUSPECT_RACE_DESCRIPTION:
- 7
- 3
- 7
SUSPECT_REPORTED_AGE:
- 22.0
- 20.0
- 30.0
SUSPECT_SEX:
- 1
- 2
- 2
SUSPECT_WEIGHT:
- 135.0
- 170.0
- 150.0
WEAPON_FOUND_FLAG:
- 0
- 0
- 0
__index_level_0__:
- 8282
- 4531
- 14786
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|--------------------------|----------------------------------------------------------|
| memory | |
| steps | [('scaler', StandardScaler()), ('svm', SGDClassifier())] |
| verbose | False |
| scaler | StandardScaler() |
| svm | SGDClassifier() |
| scaler__copy | True |
| scaler__with_mean | True |
| scaler__with_std | True |
| svm__alpha | 0.0001 |
| svm__average | False |
| svm__class_weight | |
| svm__early_stopping | False |
| svm__epsilon | 0.1 |
| svm__eta0 | 0.0 |
| svm__fit_intercept | True |
| svm__l1_ratio | 0.15 |
| svm__learning_rate | optimal |
| svm__loss | hinge |
| svm__max_iter | 1000 |
| svm__n_iter_no_change | 5 |
| svm__n_jobs | |
| svm__penalty | l2 |
| svm__power_t | 0.5 |
| svm__random_state | |
| svm__shuffle | True |
| svm__tol | 0.001 |
| svm__validation_fraction | 0.1 |
| svm__verbose | 0 |
| svm__warm_start | False |
Pipeline(steps=[('scaler', StandardScaler()), ('svm', SGDClassifier())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('scaler', StandardScaler()), ('svm', SGDClassifier())])
StandardScaler()
SGDClassifier()