--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: pickle model_file: NYC_SQF_ARR_SVM.pkl widget: - structuredData: ASK_FOR_CONSENT_FLG: - 1 - 1 - 0 CONSENT_GIVEN_FLG: - 1 - 0 - 0 FIREARM_FLAG: - 0 - 0 - 0 FRISKED_FLAG: - 1 - 1 - 1 ISSUING_OFFICER_RANK: - 10 - 13 - 9 KNIFE_CUTTER_FLAG: - 0 - 0 - 0 OTHER_CONTRABAND_FLAG: - 1 - 0 - 0 OTHER_WEAPON_FLAG: - 0 - 0 - 0 SEARCHED_FLAG: - 1 - 0 - 1 STOP_ID: - 8283 - 4532 - 14787 STOP_LOCATION_PRECINCT: - 90 - 40 - 106 SUPERVISING_OFFICER_RANK: - 12 - 7 - 12 SUSPECT_BODY_BUILD_TYPE: - 2 - 3 - 3 SUSPECT_HEIGHT: - 5.7 - 5.1 - 5.6 SUSPECT_RACE_DESCRIPTION: - 7 - 3 - 7 SUSPECT_REPORTED_AGE: - 22.0 - 20.0 - 30.0 SUSPECT_SEX: - 1 - 2 - 2 SUSPECT_WEIGHT: - 135.0 - 170.0 - 150.0 WEAPON_FOUND_FLAG: - 0 - 0 - 0 __index_level_0__: - 8282 - 4531 - 14786 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |--------------------------|----------------------------------------------------------| | memory | | | steps | [('scaler', StandardScaler()), ('svm', SGDClassifier())] | | verbose | False | | scaler | StandardScaler() | | svm | SGDClassifier() | | scaler__copy | True | | scaler__with_mean | True | | scaler__with_std | True | | svm__alpha | 0.0001 | | svm__average | False | | svm__class_weight | | | svm__early_stopping | False | | svm__epsilon | 0.1 | | svm__eta0 | 0.0 | | svm__fit_intercept | True | | svm__l1_ratio | 0.15 | | svm__learning_rate | optimal | | svm__loss | hinge | | svm__max_iter | 1000 | | svm__n_iter_no_change | 5 | | svm__n_jobs | | | svm__penalty | l2 | | svm__power_t | 0.5 | | svm__random_state | | | svm__shuffle | True | | svm__tol | 0.001 | | svm__validation_fraction | 0.1 | | svm__verbose | 0 | | svm__warm_start | False |
### Model Plot
Pipeline(steps=[('scaler', StandardScaler()), ('svm', SGDClassifier())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results | Metric | Value | |-----------|----------| | accuracy | 0.820274 | | f1 score | 0.695733 | | precision | 0.752005 | | recall | 0.647296 | # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # eval_method The model is evaluated using test split, on accuracy, precision, recall and f1.