---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: NYC_SQF_ARR_MLP.pkl
widget:
- structuredData:
ASK_FOR_CONSENT_FLG:
- 1
- 1
- 0
CONSENT_GIVEN_FLG:
- 1
- 0
- 0
FIREARM_FLAG:
- 0
- 0
- 0
FRISKED_FLAG:
- 1
- 1
- 1
ISSUING_OFFICER_RANK:
- 10
- 13
- 9
KNIFE_CUTTER_FLAG:
- 0
- 0
- 0
OTHER_CONTRABAND_FLAG:
- 1
- 0
- 0
OTHER_WEAPON_FLAG:
- 0
- 0
- 0
SEARCHED_FLAG:
- 1
- 0
- 1
STOP_ID:
- 8283
- 4532
- 14787
STOP_LOCATION_PRECINCT:
- 90
- 40
- 106
SUPERVISING_OFFICER_RANK:
- 12
- 7
- 12
SUSPECT_BODY_BUILD_TYPE:
- 2
- 3
- 3
SUSPECT_HEIGHT:
- 5.7
- 5.1
- 5.6
SUSPECT_RACE_DESCRIPTION:
- 7
- 3
- 7
SUSPECT_REPORTED_AGE:
- 22.0
- 20.0
- 30.0
SUSPECT_SEX:
- 1
- 2
- 2
SUSPECT_WEIGHT:
- 135.0
- 170.0
- 150.0
WEAPON_FOUND_FLAG:
- 0
- 0
- 0
__index_level_0__:
- 8282
- 4531
- 14786
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|--------------------------|--------------------------------------------------------|
| memory | |
| steps | [('scaler', MinMaxScaler()), ('mlp', MLPClassifier())] |
| verbose | False |
| scaler | MinMaxScaler() |
| mlp | MLPClassifier() |
| scaler__clip | False |
| scaler__copy | True |
| scaler__feature_range | (0, 1) |
| mlp__activation | relu |
| mlp__alpha | 0.0001 |
| mlp__batch_size | auto |
| mlp__beta_1 | 0.9 |
| mlp__beta_2 | 0.999 |
| mlp__early_stopping | False |
| mlp__epsilon | 1e-08 |
| mlp__hidden_layer_sizes | (100,) |
| mlp__learning_rate | constant |
| mlp__learning_rate_init | 0.001 |
| mlp__max_fun | 15000 |
| mlp__max_iter | 200 |
| mlp__momentum | 0.9 |
| mlp__n_iter_no_change | 10 |
| mlp__nesterovs_momentum | True |
| mlp__power_t | 0.5 |
| mlp__random_state | |
| mlp__shuffle | True |
| mlp__solver | adam |
| mlp__tol | 0.0001 |
| mlp__validation_fraction | 0.1 |
| mlp__verbose | False |
| mlp__warm_start | False |
Pipeline(steps=[('scaler', MinMaxScaler()), ('mlp', MLPClassifier())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('scaler', MinMaxScaler()), ('mlp', MLPClassifier())])
MinMaxScaler()
MLPClassifier()