pppereira3 commited on
Commit
4a66d3f
1 Parent(s): a24c8fa

pushing files to the repo from the example!

Browse files
Files changed (3) hide show
  1. NYC_SQF_ARR_MLP.pkl +3 -0
  2. README.md +261 -0
  3. config.json +136 -0
NYC_SQF_ARR_MLP.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbf19008614e076368a6994b4f4a748d12dde0741dc1027f117eaffc6a70f85b
3
+ size 62326
README.md ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: pickle
8
+ model_file: NYC_SQF_ARR_MLP.pkl
9
+ widget:
10
+ - structuredData:
11
+ ASK_FOR_CONSENT_FLG:
12
+ - 1
13
+ - 1
14
+ - 0
15
+ CONSENT_GIVEN_FLG:
16
+ - 1
17
+ - 0
18
+ - 0
19
+ FIREARM_FLAG:
20
+ - 0
21
+ - 0
22
+ - 0
23
+ FRISKED_FLAG:
24
+ - 1
25
+ - 1
26
+ - 1
27
+ ISSUING_OFFICER_RANK:
28
+ - 10
29
+ - 13
30
+ - 9
31
+ KNIFE_CUTTER_FLAG:
32
+ - 0
33
+ - 0
34
+ - 0
35
+ OTHER_CONTRABAND_FLAG:
36
+ - 1
37
+ - 0
38
+ - 0
39
+ OTHER_WEAPON_FLAG:
40
+ - 0
41
+ - 0
42
+ - 0
43
+ SEARCHED_FLAG:
44
+ - 1
45
+ - 0
46
+ - 1
47
+ STOP_ID:
48
+ - 8283
49
+ - 4532
50
+ - 14787
51
+ STOP_LOCATION_PRECINCT:
52
+ - 90
53
+ - 40
54
+ - 106
55
+ SUPERVISING_OFFICER_RANK:
56
+ - 12
57
+ - 7
58
+ - 12
59
+ SUSPECT_BODY_BUILD_TYPE:
60
+ - 2
61
+ - 3
62
+ - 3
63
+ SUSPECT_HEIGHT:
64
+ - 5.7
65
+ - 5.1
66
+ - 5.6
67
+ SUSPECT_RACE_DESCRIPTION:
68
+ - 7
69
+ - 3
70
+ - 7
71
+ SUSPECT_REPORTED_AGE:
72
+ - 22.0
73
+ - 20.0
74
+ - 30.0
75
+ SUSPECT_SEX:
76
+ - 1
77
+ - 2
78
+ - 2
79
+ SUSPECT_WEIGHT:
80
+ - 135.0
81
+ - 170.0
82
+ - 150.0
83
+ WEAPON_FOUND_FLAG:
84
+ - 0
85
+ - 0
86
+ - 0
87
+ __index_level_0__:
88
+ - 8282
89
+ - 4531
90
+ - 14786
91
+ ---
92
+
93
+ # Model description
94
+
95
+ [More Information Needed]
96
+
97
+ ## Intended uses & limitations
98
+
99
+ [More Information Needed]
100
+
101
+ ## Training Procedure
102
+
103
+ [More Information Needed]
104
+
105
+ ### Hyperparameters
106
+
107
+ <details>
108
+ <summary> Click to expand </summary>
109
+
110
+ | Hyperparameter | Value |
111
+ |--------------------------|--------------------------------------------------------|
112
+ | memory | |
113
+ | steps | [('scaler', MinMaxScaler()), ('mlp', MLPClassifier())] |
114
+ | verbose | False |
115
+ | scaler | MinMaxScaler() |
116
+ | mlp | MLPClassifier() |
117
+ | scaler__clip | False |
118
+ | scaler__copy | True |
119
+ | scaler__feature_range | (0, 1) |
120
+ | mlp__activation | relu |
121
+ | mlp__alpha | 0.0001 |
122
+ | mlp__batch_size | auto |
123
+ | mlp__beta_1 | 0.9 |
124
+ | mlp__beta_2 | 0.999 |
125
+ | mlp__early_stopping | False |
126
+ | mlp__epsilon | 1e-08 |
127
+ | mlp__hidden_layer_sizes | (100,) |
128
+ | mlp__learning_rate | constant |
129
+ | mlp__learning_rate_init | 0.001 |
130
+ | mlp__max_fun | 15000 |
131
+ | mlp__max_iter | 200 |
132
+ | mlp__momentum | 0.9 |
133
+ | mlp__n_iter_no_change | 10 |
134
+ | mlp__nesterovs_momentum | True |
135
+ | mlp__power_t | 0.5 |
136
+ | mlp__random_state | |
137
+ | mlp__shuffle | True |
138
+ | mlp__solver | adam |
139
+ | mlp__tol | 0.0001 |
140
+ | mlp__validation_fraction | 0.1 |
141
+ | mlp__verbose | False |
142
+ | mlp__warm_start | False |
143
+
144
+ </details>
145
+
146
+ ### Model Plot
147
+
148
+ <style>#sk-container-id-3 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
149
+ }#sk-container-id-3 {color: var(--sklearn-color-text);
150
+ }#sk-container-id-3 pre {padding: 0;
151
+ }#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
152
+ }#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
153
+ }#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
154
+ }#sk-container-id-3 div.sk-text-repr-fallback {display: none;
155
+ }div.sk-parallel-item,
156
+ div.sk-serial,
157
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
158
+ }/* Parallel-specific style estimator block */#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
159
+ }#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
160
+ }#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;
161
+ }#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
162
+ }#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
163
+ }#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;
164
+ }/* Serial-specific style estimator block */#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
165
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
166
+ clickable and can be expanded/collapsed.
167
+ - Pipeline and ColumnTransformer use this feature and define the default style
168
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
169
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-3 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
170
+ }/* Toggleable label */
171
+ #sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
172
+ }#sk-container-id-3 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
173
+ }#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
174
+ }/* Toggleable content - dropdown */#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
175
+ }#sk-container-id-3 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
176
+ }#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
177
+ }#sk-container-id-3 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
178
+ }#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
179
+ }#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
180
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
181
+ }#sk-container-id-3 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
182
+ }/* Estimator-specific style *//* Colorize estimator box */
183
+ #sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
184
+ }#sk-container-id-3 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
185
+ }#sk-container-id-3 div.sk-label label.sk-toggleable__label,
186
+ #sk-container-id-3 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
187
+ }/* On hover, darken the color of the background */
188
+ #sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
189
+ }/* Label box, darken color on hover, fitted */
190
+ #sk-container-id-3 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
191
+ }/* Estimator label */#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
192
+ }#sk-container-id-3 div.sk-label-container {text-align: center;
193
+ }/* Estimator-specific */
194
+ #sk-container-id-3 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
195
+ }#sk-container-id-3 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
196
+ }/* on hover */
197
+ #sk-container-id-3 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
198
+ }#sk-container-id-3 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
199
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
200
+ a:link.sk-estimator-doc-link,
201
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
202
+ }.sk-estimator-doc-link.fitted,
203
+ a:link.sk-estimator-doc-link.fitted,
204
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
205
+ }/* On hover */
206
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
207
+ .sk-estimator-doc-link:hover,
208
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
209
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
210
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
211
+ .sk-estimator-doc-link.fitted:hover,
212
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
213
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
214
+ }/* Span, style for the box shown on hovering the info icon */
215
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
216
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
217
+ }.sk-estimator-doc-link:hover span {display: block;
218
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-3 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
219
+ }#sk-container-id-3 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
220
+ }/* On hover */
221
+ #sk-container-id-3 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
222
+ }#sk-container-id-3 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
223
+ }
224
+ </style><div id="sk-container-id-3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, MinMaxScaler()), (&#x27;mlp&#x27;, MLPClassifier())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, MinMaxScaler()), (&#x27;mlp&#x27;, MLPClassifier())])</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-8" type="checkbox" ><label for="sk-estimator-id-8" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;MinMaxScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.MinMaxScaler.html">?<span>Documentation for MinMaxScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>MinMaxScaler()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-9" type="checkbox" ><label for="sk-estimator-id-9" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;MLPClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.neural_network.MLPClassifier.html">?<span>Documentation for MLPClassifier</span></a></label><div class="sk-toggleable__content fitted"><pre>MLPClassifier()</pre></div> </div></div></div></div></div></div>
225
+
226
+ ## Evaluation Results
227
+
228
+ | Metric | Value |
229
+ |-----------|----------|
230
+ | accuracy | 0.854977 |
231
+ | f1 score | 0.755843 |
232
+ | precision | 0.811757 |
233
+ | recall | 0.707135 |
234
+
235
+ # How to Get Started with the Model
236
+
237
+ [More Information Needed]
238
+
239
+ # Model Card Authors
240
+
241
+ This model card is written by following authors:
242
+
243
+ [More Information Needed]
244
+
245
+ # Model Card Contact
246
+
247
+ You can contact the model card authors through following channels:
248
+ [More Information Needed]
249
+
250
+ # Citation
251
+
252
+ Below you can find information related to citation.
253
+
254
+ **BibTeX:**
255
+ ```
256
+ [More Information Needed]
257
+ ```
258
+
259
+ # eval_method
260
+
261
+ The model is evaluated using test split, on accuracy, precision, recall and f1.
config.json ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "STOP_ID",
5
+ "FRISKED_FLAG",
6
+ "SEARCHED_FLAG",
7
+ "STOP_LOCATION_PRECINCT",
8
+ "SUSPECT_REPORTED_AGE",
9
+ "SUSPECT_SEX",
10
+ "SUSPECT_RACE_DESCRIPTION",
11
+ "SUSPECT_HEIGHT",
12
+ "SUSPECT_WEIGHT",
13
+ "SUSPECT_BODY_BUILD_TYPE",
14
+ "OTHER_CONTRABAND_FLAG",
15
+ "FIREARM_FLAG",
16
+ "KNIFE_CUTTER_FLAG",
17
+ "OTHER_WEAPON_FLAG",
18
+ "WEAPON_FOUND_FLAG",
19
+ "ASK_FOR_CONSENT_FLG",
20
+ "CONSENT_GIVEN_FLG",
21
+ "ISSUING_OFFICER_RANK",
22
+ "SUPERVISING_OFFICER_RANK",
23
+ "__index_level_0__"
24
+ ],
25
+ "environment": [
26
+ "scikit-learn=1.5.2"
27
+ ],
28
+ "example_input": {
29
+ "ASK_FOR_CONSENT_FLG": [
30
+ 1,
31
+ 1,
32
+ 0
33
+ ],
34
+ "CONSENT_GIVEN_FLG": [
35
+ 1,
36
+ 0,
37
+ 0
38
+ ],
39
+ "FIREARM_FLAG": [
40
+ 0,
41
+ 0,
42
+ 0
43
+ ],
44
+ "FRISKED_FLAG": [
45
+ 1,
46
+ 1,
47
+ 1
48
+ ],
49
+ "ISSUING_OFFICER_RANK": [
50
+ 10,
51
+ 13,
52
+ 9
53
+ ],
54
+ "KNIFE_CUTTER_FLAG": [
55
+ 0,
56
+ 0,
57
+ 0
58
+ ],
59
+ "OTHER_CONTRABAND_FLAG": [
60
+ 1,
61
+ 0,
62
+ 0
63
+ ],
64
+ "OTHER_WEAPON_FLAG": [
65
+ 0,
66
+ 0,
67
+ 0
68
+ ],
69
+ "SEARCHED_FLAG": [
70
+ 1,
71
+ 0,
72
+ 1
73
+ ],
74
+ "STOP_ID": [
75
+ 8283,
76
+ 4532,
77
+ 14787
78
+ ],
79
+ "STOP_LOCATION_PRECINCT": [
80
+ 90,
81
+ 40,
82
+ 106
83
+ ],
84
+ "SUPERVISING_OFFICER_RANK": [
85
+ 12,
86
+ 7,
87
+ 12
88
+ ],
89
+ "SUSPECT_BODY_BUILD_TYPE": [
90
+ 2,
91
+ 3,
92
+ 3
93
+ ],
94
+ "SUSPECT_HEIGHT": [
95
+ 5.7,
96
+ 5.1,
97
+ 5.6
98
+ ],
99
+ "SUSPECT_RACE_DESCRIPTION": [
100
+ 7,
101
+ 3,
102
+ 7
103
+ ],
104
+ "SUSPECT_REPORTED_AGE": [
105
+ 22.0,
106
+ 20.0,
107
+ 30.0
108
+ ],
109
+ "SUSPECT_SEX": [
110
+ 1,
111
+ 2,
112
+ 2
113
+ ],
114
+ "SUSPECT_WEIGHT": [
115
+ 135.0,
116
+ 170.0,
117
+ 150.0
118
+ ],
119
+ "WEAPON_FOUND_FLAG": [
120
+ 0,
121
+ 0,
122
+ 0
123
+ ],
124
+ "__index_level_0__": [
125
+ 8282,
126
+ 4531,
127
+ 14786
128
+ ]
129
+ },
130
+ "model": {
131
+ "file": "NYC_SQF_ARR_MLP.pkl"
132
+ },
133
+ "model_format": "pickle",
134
+ "task": "tabular-classification"
135
+ }
136
+ }