--- license: mit base_model: microsoft/MiniLM-L12-H384-uncased tags: - generated_from_trainer datasets: - emotion metrics: - f1 model-index: - name: minisss results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: F1 type: f1 value: 0.9361370380020481 --- # minisss This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1791 - F1: 0.9361 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1818 | 1.0 | 250 | 0.8298 | 0.5948 | | 0.6392 | 2.0 | 500 | 0.3998 | 0.9005 | | 0.3246 | 3.0 | 750 | 0.2472 | 0.9301 | | 0.2151 | 4.0 | 1000 | 0.1937 | 0.9341 | | 0.1707 | 5.0 | 1250 | 0.1791 | 0.9361 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2