File size: 104,072 Bytes
8cf63df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
2022-05-26 10:46:41,638 INFO [train.py:906] (2/4) Training started
2022-05-26 10:46:41,638 INFO [train.py:916] (2/4) Device: cuda:2
2022-05-26 10:46:41,640 INFO [train.py:934] (2/4) {'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 50, 'reset_interval': 200, 'valid_interval': 3000, 'feature_dim': 80, 'subsampling_factor': 4, 'encoder_dim': 512, 'nhead': 8, 'dim_feedforward': 2048, 'num_encoder_layers': 12, 'decoder_dim': 512, 'joiner_dim': 512, 'model_warm_step': 3000, 'env_info': {'k2-version': '1.15.1', 'k2-build-type': 'Debug', 'k2-with-cuda': True, 'k2-git-sha1': 'ecfe7bd6d9189964bf3ff043038918d889a43185', 'k2-git-date': 'Tue May 10 10:57:55 2022', 'lhotse-version': '1.1.0', 'torch-version': '1.10.0+cu102', 'torch-cuda-available': True, 'torch-cuda-version': '10.2', 'python-version': '3.8', 'icefall-git-branch': 'streaming-conformer', 'icefall-git-sha1': '364bccb-clean', 'icefall-git-date': 'Thu May 26 10:29:08 2022', 'icefall-path': '/ceph-kw/kangwei/code/icefall_reworked2', 'k2-path': '/ceph-kw/kangwei/code/k2/k2/python/k2/__init__.py', 'lhotse-path': '/ceph-hw/kangwei/dev_tools/anaconda3/envs/rnnt2/lib/python3.8/site-packages/lhotse-1.1.0-py3.8.egg/lhotse/__init__.py', 'hostname': 'de-74279-k2-train-3-0307202051-57dc848959-8tmmp', 'IP address': '10.177.24.138'}, 'world_size': 4, 'master_port': 13498, 'tensorboard': True, 'num_epochs': 50, 'start_epoch': 1, 'start_batch': 0, 'exp_dir': PosixPath('streaming_pruned_transducer_stateless4/exp'), 'bpe_model': 'data/lang_bpe_500/bpe.model', 'initial_lr': 0.003, 'lr_batches': 5000, 'lr_epochs': 6, 'context_size': 2, 'prune_range': 5, 'lm_scale': 0.25, 'am_scale': 0.0, 'simple_loss_scale': 0.5, 'seed': 42, 'print_diagnostics': False, 'save_every_n': 8000, 'keep_last_k': 20, 'average_period': 100, 'use_fp16': False, 'dynamic_chunk_training': True, 'causal_convolution': True, 'short_chunk_size': 32, 'num_left_chunks': 4, 'delay_penalty': 0.0, 'return_sym_delay': False, 'full_libri': True, 'manifest_dir': PosixPath('data/fbank'), 'max_duration': 300, 'bucketing_sampler': True, 'num_buckets': 30, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': True, 'return_cuts': True, 'num_workers': 2, 'enable_spec_aug': True, 'spec_aug_time_warp_factor': 80, 'enable_musan': True, 'blank_id': 0, 'vocab_size': 500}
2022-05-26 10:46:41,640 INFO [train.py:936] (2/4) About to create model
2022-05-26 10:46:42,066 INFO [train.py:940] (2/4) Number of model parameters: 78648040
2022-05-26 10:46:47,122 INFO [train.py:955] (2/4) Using DDP
2022-05-26 10:46:47,469 INFO [asr_datamodule.py:391] (2/4) About to get train-clean-100 cuts
2022-05-26 10:46:54,115 INFO [asr_datamodule.py:398] (2/4) About to get train-clean-360 cuts
2022-05-26 10:47:21,042 INFO [asr_datamodule.py:405] (2/4) About to get train-other-500 cuts
2022-05-26 10:48:06,960 INFO [asr_datamodule.py:209] (2/4) Enable MUSAN
2022-05-26 10:48:06,960 INFO [asr_datamodule.py:210] (2/4) About to get Musan cuts
2022-05-26 10:48:08,394 INFO [asr_datamodule.py:238] (2/4) Enable SpecAugment
2022-05-26 10:48:08,394 INFO [asr_datamodule.py:239] (2/4) Time warp factor: 80
2022-05-26 10:48:08,394 INFO [asr_datamodule.py:251] (2/4) Num frame mask: 10
2022-05-26 10:48:08,394 INFO [asr_datamodule.py:264] (2/4) About to create train dataset
2022-05-26 10:48:08,394 INFO [asr_datamodule.py:292] (2/4) Using BucketingSampler.
2022-05-26 10:48:13,474 INFO [asr_datamodule.py:308] (2/4) About to create train dataloader
2022-05-26 10:48:13,475 INFO [asr_datamodule.py:412] (2/4) About to get dev-clean cuts
2022-05-26 10:48:13,757 INFO [asr_datamodule.py:417] (2/4) About to get dev-other cuts
2022-05-26 10:48:13,887 INFO [asr_datamodule.py:339] (2/4) About to create dev dataset
2022-05-26 10:48:13,897 INFO [asr_datamodule.py:358] (2/4) About to create dev dataloader
2022-05-26 10:48:13,898 INFO [train.py:1082] (2/4) Sanity check -- see if any of the batches in epoch 1 would cause OOM.
2022-05-26 10:48:23,784 INFO [distributed.py:874] (2/4) Reducer buckets have been rebuilt in this iteration.
2022-05-26 10:48:40,736 INFO [train.py:842] (2/4) Epoch 1, batch 0, loss[loss=0.8248, simple_loss=1.65, pruned_loss=6.655, over 7296.00 frames.], tot_loss[loss=0.8248, simple_loss=1.65, pruned_loss=6.655, over 7296.00 frames.], batch size: 17, lr: 3.00e-03
2022-05-26 10:49:19,665 INFO [train.py:842] (2/4) Epoch 1, batch 50, loss[loss=0.5201, simple_loss=1.04, pruned_loss=6.985, over 7158.00 frames.], tot_loss[loss=0.5651, simple_loss=1.13, pruned_loss=7.1, over 323665.70 frames.], batch size: 19, lr: 3.00e-03
2022-05-26 10:49:59,137 INFO [train.py:842] (2/4) Epoch 1, batch 100, loss[loss=0.42, simple_loss=0.8399, pruned_loss=6.779, over 6991.00 frames.], tot_loss[loss=0.5057, simple_loss=1.011, pruned_loss=7.008, over 566611.93 frames.], batch size: 16, lr: 3.00e-03
2022-05-26 10:50:37,765 INFO [train.py:842] (2/4) Epoch 1, batch 150, loss[loss=0.3748, simple_loss=0.7496, pruned_loss=6.754, over 6984.00 frames.], tot_loss[loss=0.4738, simple_loss=0.9476, pruned_loss=6.939, over 757952.40 frames.], batch size: 16, lr: 3.00e-03
2022-05-26 10:51:16,823 INFO [train.py:842] (2/4) Epoch 1, batch 200, loss[loss=0.4422, simple_loss=0.8844, pruned_loss=6.828, over 7280.00 frames.], tot_loss[loss=0.4518, simple_loss=0.9035, pruned_loss=6.888, over 907906.25 frames.], batch size: 25, lr: 3.00e-03
2022-05-26 10:51:55,426 INFO [train.py:842] (2/4) Epoch 1, batch 250, loss[loss=0.4296, simple_loss=0.8591, pruned_loss=6.756, over 7329.00 frames.], tot_loss[loss=0.4388, simple_loss=0.8776, pruned_loss=6.835, over 1017359.64 frames.], batch size: 21, lr: 3.00e-03
2022-05-26 10:52:34,296 INFO [train.py:842] (2/4) Epoch 1, batch 300, loss[loss=0.4437, simple_loss=0.8875, pruned_loss=6.784, over 7297.00 frames.], tot_loss[loss=0.4283, simple_loss=0.8566, pruned_loss=6.796, over 1109521.62 frames.], batch size: 25, lr: 3.00e-03
2022-05-26 10:53:13,228 INFO [train.py:842] (2/4) Epoch 1, batch 350, loss[loss=0.3849, simple_loss=0.7699, pruned_loss=6.683, over 7259.00 frames.], tot_loss[loss=0.4193, simple_loss=0.8386, pruned_loss=6.763, over 1179464.43 frames.], batch size: 19, lr: 3.00e-03
2022-05-26 10:53:52,160 INFO [train.py:842] (2/4) Epoch 1, batch 400, loss[loss=0.4318, simple_loss=0.8636, pruned_loss=6.788, over 7419.00 frames.], tot_loss[loss=0.4136, simple_loss=0.8272, pruned_loss=6.749, over 1231809.80 frames.], batch size: 21, lr: 3.00e-03
2022-05-26 10:54:30,788 INFO [train.py:842] (2/4) Epoch 1, batch 450, loss[loss=0.4083, simple_loss=0.8165, pruned_loss=6.766, over 7403.00 frames.], tot_loss[loss=0.4076, simple_loss=0.8151, pruned_loss=6.73, over 1267309.64 frames.], batch size: 21, lr: 2.99e-03
2022-05-26 10:55:09,750 INFO [train.py:842] (2/4) Epoch 1, batch 500, loss[loss=0.3701, simple_loss=0.7402, pruned_loss=6.599, over 7205.00 frames.], tot_loss[loss=0.4011, simple_loss=0.8022, pruned_loss=6.711, over 1303382.45 frames.], batch size: 22, lr: 2.99e-03
2022-05-26 10:55:48,092 INFO [train.py:842] (2/4) Epoch 1, batch 550, loss[loss=0.3862, simple_loss=0.7724, pruned_loss=6.745, over 7339.00 frames.], tot_loss[loss=0.3943, simple_loss=0.7886, pruned_loss=6.702, over 1329380.89 frames.], batch size: 22, lr: 2.99e-03
2022-05-26 10:56:27,037 INFO [train.py:842] (2/4) Epoch 1, batch 600, loss[loss=0.3397, simple_loss=0.6794, pruned_loss=6.669, over 7111.00 frames.], tot_loss[loss=0.3836, simple_loss=0.7673, pruned_loss=6.694, over 1350918.06 frames.], batch size: 21, lr: 2.99e-03
2022-05-26 10:57:05,638 INFO [train.py:842] (2/4) Epoch 1, batch 650, loss[loss=0.2636, simple_loss=0.5272, pruned_loss=6.613, over 7003.00 frames.], tot_loss[loss=0.3718, simple_loss=0.7437, pruned_loss=6.7, over 1369206.61 frames.], batch size: 16, lr: 2.99e-03
2022-05-26 10:57:44,556 INFO [train.py:842] (2/4) Epoch 1, batch 700, loss[loss=0.3144, simple_loss=0.6287, pruned_loss=6.722, over 7213.00 frames.], tot_loss[loss=0.3588, simple_loss=0.7177, pruned_loss=6.695, over 1380923.28 frames.], batch size: 23, lr: 2.99e-03
2022-05-26 10:58:23,539 INFO [train.py:842] (2/4) Epoch 1, batch 750, loss[loss=0.2523, simple_loss=0.5045, pruned_loss=6.543, over 7282.00 frames.], tot_loss[loss=0.3463, simple_loss=0.6926, pruned_loss=6.694, over 1392198.14 frames.], batch size: 17, lr: 2.98e-03
2022-05-26 10:59:02,466 INFO [train.py:842] (2/4) Epoch 1, batch 800, loss[loss=0.3401, simple_loss=0.6802, pruned_loss=6.745, over 7124.00 frames.], tot_loss[loss=0.3357, simple_loss=0.6713, pruned_loss=6.704, over 1397496.29 frames.], batch size: 21, lr: 2.98e-03
2022-05-26 10:59:41,342 INFO [train.py:842] (2/4) Epoch 1, batch 850, loss[loss=0.2799, simple_loss=0.5597, pruned_loss=6.837, over 7224.00 frames.], tot_loss[loss=0.3249, simple_loss=0.6499, pruned_loss=6.71, over 1402422.36 frames.], batch size: 21, lr: 2.98e-03
2022-05-26 11:00:20,374 INFO [train.py:842] (2/4) Epoch 1, batch 900, loss[loss=0.3084, simple_loss=0.6167, pruned_loss=6.747, over 7326.00 frames.], tot_loss[loss=0.315, simple_loss=0.6299, pruned_loss=6.711, over 1406765.04 frames.], batch size: 21, lr: 2.98e-03
2022-05-26 11:00:58,853 INFO [train.py:842] (2/4) Epoch 1, batch 950, loss[loss=0.2329, simple_loss=0.4657, pruned_loss=6.582, over 7006.00 frames.], tot_loss[loss=0.3069, simple_loss=0.6138, pruned_loss=6.715, over 1404077.12 frames.], batch size: 16, lr: 2.97e-03
2022-05-26 11:01:37,553 INFO [train.py:842] (2/4) Epoch 1, batch 1000, loss[loss=0.2388, simple_loss=0.4776, pruned_loss=6.622, over 6989.00 frames.], tot_loss[loss=0.2999, simple_loss=0.5998, pruned_loss=6.72, over 1404548.90 frames.], batch size: 16, lr: 2.97e-03
2022-05-26 11:02:16,197 INFO [train.py:842] (2/4) Epoch 1, batch 1050, loss[loss=0.2183, simple_loss=0.4366, pruned_loss=6.549, over 7013.00 frames.], tot_loss[loss=0.2946, simple_loss=0.5892, pruned_loss=6.727, over 1406660.06 frames.], batch size: 16, lr: 2.97e-03
2022-05-26 11:02:54,892 INFO [train.py:842] (2/4) Epoch 1, batch 1100, loss[loss=0.2668, simple_loss=0.5337, pruned_loss=6.783, over 7201.00 frames.], tot_loss[loss=0.2894, simple_loss=0.5789, pruned_loss=6.729, over 1411370.98 frames.], batch size: 22, lr: 2.96e-03
2022-05-26 11:03:33,473 INFO [train.py:842] (2/4) Epoch 1, batch 1150, loss[loss=0.3004, simple_loss=0.6007, pruned_loss=6.949, over 6700.00 frames.], tot_loss[loss=0.2838, simple_loss=0.5676, pruned_loss=6.734, over 1411338.54 frames.], batch size: 31, lr: 2.96e-03
2022-05-26 11:04:12,438 INFO [train.py:842] (2/4) Epoch 1, batch 1200, loss[loss=0.2608, simple_loss=0.5216, pruned_loss=6.762, over 7150.00 frames.], tot_loss[loss=0.2772, simple_loss=0.5545, pruned_loss=6.737, over 1419044.69 frames.], batch size: 26, lr: 2.96e-03
2022-05-26 11:04:50,803 INFO [train.py:842] (2/4) Epoch 1, batch 1250, loss[loss=0.2722, simple_loss=0.5445, pruned_loss=6.888, over 7382.00 frames.], tot_loss[loss=0.2728, simple_loss=0.5456, pruned_loss=6.739, over 1412427.30 frames.], batch size: 23, lr: 2.95e-03
2022-05-26 11:05:29,853 INFO [train.py:842] (2/4) Epoch 1, batch 1300, loss[loss=0.2779, simple_loss=0.5557, pruned_loss=6.897, over 7305.00 frames.], tot_loss[loss=0.2687, simple_loss=0.5375, pruned_loss=6.746, over 1420872.13 frames.], batch size: 24, lr: 2.95e-03
2022-05-26 11:06:08,501 INFO [train.py:842] (2/4) Epoch 1, batch 1350, loss[loss=0.2744, simple_loss=0.5487, pruned_loss=6.858, over 7144.00 frames.], tot_loss[loss=0.265, simple_loss=0.5301, pruned_loss=6.753, over 1422167.50 frames.], batch size: 20, lr: 2.95e-03
2022-05-26 11:06:47,143 INFO [train.py:842] (2/4) Epoch 1, batch 1400, loss[loss=0.2678, simple_loss=0.5357, pruned_loss=6.963, over 7294.00 frames.], tot_loss[loss=0.2625, simple_loss=0.5251, pruned_loss=6.759, over 1418838.73 frames.], batch size: 24, lr: 2.94e-03
2022-05-26 11:07:25,757 INFO [train.py:842] (2/4) Epoch 1, batch 1450, loss[loss=0.2156, simple_loss=0.4311, pruned_loss=6.581, over 7137.00 frames.], tot_loss[loss=0.2585, simple_loss=0.5169, pruned_loss=6.76, over 1419909.96 frames.], batch size: 17, lr: 2.94e-03
2022-05-26 11:08:04,594 INFO [train.py:842] (2/4) Epoch 1, batch 1500, loss[loss=0.258, simple_loss=0.516, pruned_loss=6.904, over 7314.00 frames.], tot_loss[loss=0.2548, simple_loss=0.5096, pruned_loss=6.769, over 1422812.09 frames.], batch size: 24, lr: 2.94e-03
2022-05-26 11:08:43,069 INFO [train.py:842] (2/4) Epoch 1, batch 1550, loss[loss=0.2549, simple_loss=0.5099, pruned_loss=6.893, over 7121.00 frames.], tot_loss[loss=0.2513, simple_loss=0.5027, pruned_loss=6.774, over 1422967.57 frames.], batch size: 21, lr: 2.93e-03
2022-05-26 11:09:22,185 INFO [train.py:842] (2/4) Epoch 1, batch 1600, loss[loss=0.2558, simple_loss=0.5115, pruned_loss=6.877, over 7329.00 frames.], tot_loss[loss=0.249, simple_loss=0.4981, pruned_loss=6.778, over 1419802.00 frames.], batch size: 20, lr: 2.93e-03
2022-05-26 11:10:01,420 INFO [train.py:842] (2/4) Epoch 1, batch 1650, loss[loss=0.2365, simple_loss=0.4731, pruned_loss=6.784, over 7161.00 frames.], tot_loss[loss=0.2459, simple_loss=0.4918, pruned_loss=6.781, over 1421656.08 frames.], batch size: 18, lr: 2.92e-03
2022-05-26 11:10:40,812 INFO [train.py:842] (2/4) Epoch 1, batch 1700, loss[loss=0.2473, simple_loss=0.4947, pruned_loss=6.874, over 6407.00 frames.], tot_loss[loss=0.2438, simple_loss=0.4876, pruned_loss=6.785, over 1416713.61 frames.], batch size: 38, lr: 2.92e-03
2022-05-26 11:11:19,945 INFO [train.py:842] (2/4) Epoch 1, batch 1750, loss[loss=0.24, simple_loss=0.48, pruned_loss=6.758, over 6418.00 frames.], tot_loss[loss=0.2407, simple_loss=0.4813, pruned_loss=6.784, over 1416764.15 frames.], batch size: 37, lr: 2.91e-03
2022-05-26 11:11:59,997 INFO [train.py:842] (2/4) Epoch 1, batch 1800, loss[loss=0.2453, simple_loss=0.4906, pruned_loss=6.752, over 7094.00 frames.], tot_loss[loss=0.2404, simple_loss=0.4808, pruned_loss=6.795, over 1418116.81 frames.], batch size: 28, lr: 2.91e-03
2022-05-26 11:12:39,024 INFO [train.py:842] (2/4) Epoch 1, batch 1850, loss[loss=0.2649, simple_loss=0.5298, pruned_loss=6.855, over 5086.00 frames.], tot_loss[loss=0.2371, simple_loss=0.4741, pruned_loss=6.792, over 1419976.86 frames.], batch size: 53, lr: 2.91e-03
2022-05-26 11:13:18,082 INFO [train.py:842] (2/4) Epoch 1, batch 1900, loss[loss=0.2344, simple_loss=0.4689, pruned_loss=6.867, over 7259.00 frames.], tot_loss[loss=0.2351, simple_loss=0.4702, pruned_loss=6.795, over 1420727.07 frames.], batch size: 19, lr: 2.90e-03
2022-05-26 11:13:56,904 INFO [train.py:842] (2/4) Epoch 1, batch 1950, loss[loss=0.1967, simple_loss=0.3934, pruned_loss=6.724, over 7323.00 frames.], tot_loss[loss=0.2337, simple_loss=0.4674, pruned_loss=6.79, over 1423718.24 frames.], batch size: 21, lr: 2.90e-03
2022-05-26 11:14:35,959 INFO [train.py:842] (2/4) Epoch 1, batch 2000, loss[loss=0.191, simple_loss=0.382, pruned_loss=6.708, over 6797.00 frames.], tot_loss[loss=0.2322, simple_loss=0.4643, pruned_loss=6.79, over 1424582.70 frames.], batch size: 15, lr: 2.89e-03
2022-05-26 11:15:15,093 INFO [train.py:842] (2/4) Epoch 1, batch 2050, loss[loss=0.2507, simple_loss=0.5015, pruned_loss=6.918, over 7178.00 frames.], tot_loss[loss=0.2301, simple_loss=0.4602, pruned_loss=6.785, over 1422997.05 frames.], batch size: 26, lr: 2.89e-03
2022-05-26 11:15:53,865 INFO [train.py:842] (2/4) Epoch 1, batch 2100, loss[loss=0.1961, simple_loss=0.3922, pruned_loss=6.636, over 7177.00 frames.], tot_loss[loss=0.2301, simple_loss=0.4601, pruned_loss=6.79, over 1420028.81 frames.], batch size: 18, lr: 2.88e-03
2022-05-26 11:16:32,684 INFO [train.py:842] (2/4) Epoch 1, batch 2150, loss[loss=0.2443, simple_loss=0.4886, pruned_loss=6.93, over 7340.00 frames.], tot_loss[loss=0.2295, simple_loss=0.459, pruned_loss=6.794, over 1424040.53 frames.], batch size: 22, lr: 2.88e-03
2022-05-26 11:17:11,542 INFO [train.py:842] (2/4) Epoch 1, batch 2200, loss[loss=0.2319, simple_loss=0.4639, pruned_loss=6.914, over 7279.00 frames.], tot_loss[loss=0.2284, simple_loss=0.4568, pruned_loss=6.789, over 1422581.30 frames.], batch size: 25, lr: 2.87e-03
2022-05-26 11:17:50,098 INFO [train.py:842] (2/4) Epoch 1, batch 2250, loss[loss=0.229, simple_loss=0.4581, pruned_loss=6.81, over 7227.00 frames.], tot_loss[loss=0.2272, simple_loss=0.4544, pruned_loss=6.79, over 1420939.34 frames.], batch size: 21, lr: 2.86e-03
2022-05-26 11:18:28,790 INFO [train.py:842] (2/4) Epoch 1, batch 2300, loss[loss=0.2035, simple_loss=0.407, pruned_loss=6.702, over 7259.00 frames.], tot_loss[loss=0.2254, simple_loss=0.4508, pruned_loss=6.792, over 1415830.36 frames.], batch size: 19, lr: 2.86e-03
2022-05-26 11:19:07,807 INFO [train.py:842] (2/4) Epoch 1, batch 2350, loss[loss=0.2182, simple_loss=0.4363, pruned_loss=6.762, over 4835.00 frames.], tot_loss[loss=0.2254, simple_loss=0.4509, pruned_loss=6.797, over 1415632.41 frames.], batch size: 53, lr: 2.85e-03
2022-05-26 11:19:47,045 INFO [train.py:842] (2/4) Epoch 1, batch 2400, loss[loss=0.2052, simple_loss=0.4104, pruned_loss=6.807, over 7434.00 frames.], tot_loss[loss=0.225, simple_loss=0.45, pruned_loss=6.801, over 1412969.60 frames.], batch size: 20, lr: 2.85e-03
2022-05-26 11:20:25,501 INFO [train.py:842] (2/4) Epoch 1, batch 2450, loss[loss=0.232, simple_loss=0.464, pruned_loss=6.853, over 5060.00 frames.], tot_loss[loss=0.2232, simple_loss=0.4463, pruned_loss=6.797, over 1413769.64 frames.], batch size: 53, lr: 2.84e-03
2022-05-26 11:21:04,495 INFO [train.py:842] (2/4) Epoch 1, batch 2500, loss[loss=0.1956, simple_loss=0.3911, pruned_loss=6.772, over 7334.00 frames.], tot_loss[loss=0.2215, simple_loss=0.4429, pruned_loss=6.797, over 1418694.44 frames.], batch size: 20, lr: 2.84e-03
2022-05-26 11:21:42,877 INFO [train.py:842] (2/4) Epoch 1, batch 2550, loss[loss=0.1761, simple_loss=0.3522, pruned_loss=6.71, over 7412.00 frames.], tot_loss[loss=0.2218, simple_loss=0.4437, pruned_loss=6.801, over 1419095.51 frames.], batch size: 18, lr: 2.83e-03
2022-05-26 11:22:21,926 INFO [train.py:842] (2/4) Epoch 1, batch 2600, loss[loss=0.2275, simple_loss=0.4549, pruned_loss=6.861, over 7239.00 frames.], tot_loss[loss=0.2198, simple_loss=0.4395, pruned_loss=6.794, over 1421810.49 frames.], batch size: 20, lr: 2.83e-03
2022-05-26 11:23:00,462 INFO [train.py:842] (2/4) Epoch 1, batch 2650, loss[loss=0.2001, simple_loss=0.4003, pruned_loss=6.794, over 7240.00 frames.], tot_loss[loss=0.2185, simple_loss=0.4371, pruned_loss=6.788, over 1423171.18 frames.], batch size: 20, lr: 2.82e-03
2022-05-26 11:23:39,473 INFO [train.py:842] (2/4) Epoch 1, batch 2700, loss[loss=0.2247, simple_loss=0.4494, pruned_loss=6.851, over 7140.00 frames.], tot_loss[loss=0.217, simple_loss=0.4341, pruned_loss=6.782, over 1422542.92 frames.], batch size: 20, lr: 2.81e-03
2022-05-26 11:24:17,967 INFO [train.py:842] (2/4) Epoch 1, batch 2750, loss[loss=0.2106, simple_loss=0.4212, pruned_loss=6.831, over 7314.00 frames.], tot_loss[loss=0.2167, simple_loss=0.4334, pruned_loss=6.785, over 1423912.32 frames.], batch size: 20, lr: 2.81e-03
2022-05-26 11:24:56,712 INFO [train.py:842] (2/4) Epoch 1, batch 2800, loss[loss=0.2194, simple_loss=0.4389, pruned_loss=6.848, over 7135.00 frames.], tot_loss[loss=0.2164, simple_loss=0.4328, pruned_loss=6.786, over 1423509.39 frames.], batch size: 20, lr: 2.80e-03
2022-05-26 11:25:35,290 INFO [train.py:842] (2/4) Epoch 1, batch 2850, loss[loss=0.2198, simple_loss=0.4396, pruned_loss=6.814, over 7352.00 frames.], tot_loss[loss=0.2173, simple_loss=0.4346, pruned_loss=6.791, over 1426374.86 frames.], batch size: 19, lr: 2.80e-03
2022-05-26 11:26:13,795 INFO [train.py:842] (2/4) Epoch 1, batch 2900, loss[loss=0.2042, simple_loss=0.4084, pruned_loss=6.827, over 7322.00 frames.], tot_loss[loss=0.217, simple_loss=0.4341, pruned_loss=6.795, over 1422056.82 frames.], batch size: 20, lr: 2.79e-03
2022-05-26 11:26:52,582 INFO [train.py:842] (2/4) Epoch 1, batch 2950, loss[loss=0.226, simple_loss=0.4519, pruned_loss=6.99, over 7191.00 frames.], tot_loss[loss=0.2162, simple_loss=0.4323, pruned_loss=6.798, over 1417863.13 frames.], batch size: 26, lr: 2.78e-03
2022-05-26 11:27:31,327 INFO [train.py:842] (2/4) Epoch 1, batch 3000, loss[loss=0.3873, simple_loss=0.4302, pruned_loss=1.722, over 7292.00 frames.], tot_loss[loss=0.2498, simple_loss=0.431, pruned_loss=6.77, over 1421667.91 frames.], batch size: 17, lr: 2.78e-03
2022-05-26 11:27:31,327 INFO [train.py:862] (2/4) Computing validation loss
2022-05-26 11:27:40,551 INFO [train.py:871] (2/4) Epoch 1, validation: loss=2.017, simple_loss=0.4861, pruned_loss=1.774, over 868885.00 frames.
2022-05-26 11:28:19,122 INFO [train.py:842] (2/4) Epoch 1, batch 3050, loss[loss=0.3568, simple_loss=0.4963, pruned_loss=1.087, over 6130.00 frames.], tot_loss[loss=0.2765, simple_loss=0.4409, pruned_loss=5.566, over 1420587.10 frames.], batch size: 37, lr: 2.77e-03
2022-05-26 11:28:58,769 INFO [train.py:842] (2/4) Epoch 1, batch 3100, loss[loss=0.2964, simple_loss=0.4422, pruned_loss=0.7533, over 7413.00 frames.], tot_loss[loss=0.2812, simple_loss=0.4367, pruned_loss=4.509, over 1426104.06 frames.], batch size: 21, lr: 2.77e-03
2022-05-26 11:29:37,544 INFO [train.py:842] (2/4) Epoch 1, batch 3150, loss[loss=0.2484, simple_loss=0.4037, pruned_loss=0.465, over 7411.00 frames.], tot_loss[loss=0.2788, simple_loss=0.4334, pruned_loss=3.639, over 1427799.32 frames.], batch size: 21, lr: 2.76e-03
2022-05-26 11:30:16,510 INFO [train.py:842] (2/4) Epoch 1, batch 3200, loss[loss=0.2486, simple_loss=0.4195, pruned_loss=0.3889, over 7301.00 frames.], tot_loss[loss=0.2738, simple_loss=0.4313, pruned_loss=2.937, over 1423403.49 frames.], batch size: 24, lr: 2.75e-03
2022-05-26 11:30:54,979 INFO [train.py:842] (2/4) Epoch 1, batch 3250, loss[loss=0.2567, simple_loss=0.4454, pruned_loss=0.3397, over 7148.00 frames.], tot_loss[loss=0.2679, simple_loss=0.4295, pruned_loss=2.365, over 1423510.86 frames.], batch size: 20, lr: 2.75e-03
2022-05-26 11:31:34,094 INFO [train.py:842] (2/4) Epoch 1, batch 3300, loss[loss=0.2626, simple_loss=0.4595, pruned_loss=0.328, over 7372.00 frames.], tot_loss[loss=0.2629, simple_loss=0.4285, pruned_loss=1.918, over 1419459.19 frames.], batch size: 23, lr: 2.74e-03
2022-05-26 11:32:12,602 INFO [train.py:842] (2/4) Epoch 1, batch 3350, loss[loss=0.2698, simple_loss=0.4717, pruned_loss=0.3394, over 7294.00 frames.], tot_loss[loss=0.2567, simple_loss=0.4251, pruned_loss=1.553, over 1423574.37 frames.], batch size: 24, lr: 2.73e-03
2022-05-26 11:32:51,525 INFO [train.py:842] (2/4) Epoch 1, batch 3400, loss[loss=0.2087, simple_loss=0.3699, pruned_loss=0.2374, over 7260.00 frames.], tot_loss[loss=0.2526, simple_loss=0.424, pruned_loss=1.27, over 1424044.75 frames.], batch size: 19, lr: 2.73e-03
2022-05-26 11:33:30,151 INFO [train.py:842] (2/4) Epoch 1, batch 3450, loss[loss=0.2457, simple_loss=0.4339, pruned_loss=0.2874, over 7289.00 frames.], tot_loss[loss=0.2485, simple_loss=0.4218, pruned_loss=1.048, over 1423531.84 frames.], batch size: 25, lr: 2.72e-03
2022-05-26 11:34:09,044 INFO [train.py:842] (2/4) Epoch 1, batch 3500, loss[loss=0.2901, simple_loss=0.4976, pruned_loss=0.4131, over 7125.00 frames.], tot_loss[loss=0.2468, simple_loss=0.4229, pruned_loss=0.8772, over 1422349.50 frames.], batch size: 26, lr: 2.72e-03
2022-05-26 11:34:47,674 INFO [train.py:842] (2/4) Epoch 1, batch 3550, loss[loss=0.2431, simple_loss=0.4347, pruned_loss=0.2579, over 7224.00 frames.], tot_loss[loss=0.2435, simple_loss=0.4206, pruned_loss=0.7393, over 1422910.57 frames.], batch size: 21, lr: 2.71e-03
2022-05-26 11:35:26,427 INFO [train.py:842] (2/4) Epoch 1, batch 3600, loss[loss=0.193, simple_loss=0.351, pruned_loss=0.1747, over 7008.00 frames.], tot_loss[loss=0.2407, simple_loss=0.4188, pruned_loss=0.6305, over 1422346.04 frames.], batch size: 16, lr: 2.70e-03
2022-05-26 11:36:05,092 INFO [train.py:842] (2/4) Epoch 1, batch 3650, loss[loss=0.234, simple_loss=0.4186, pruned_loss=0.247, over 7216.00 frames.], tot_loss[loss=0.2378, simple_loss=0.4165, pruned_loss=0.5429, over 1422813.07 frames.], batch size: 21, lr: 2.70e-03
2022-05-26 11:36:43,948 INFO [train.py:842] (2/4) Epoch 1, batch 3700, loss[loss=0.2487, simple_loss=0.4441, pruned_loss=0.2662, over 6811.00 frames.], tot_loss[loss=0.2354, simple_loss=0.4144, pruned_loss=0.4737, over 1427055.56 frames.], batch size: 31, lr: 2.69e-03
2022-05-26 11:37:22,472 INFO [train.py:842] (2/4) Epoch 1, batch 3750, loss[loss=0.1855, simple_loss=0.3371, pruned_loss=0.1694, over 7294.00 frames.], tot_loss[loss=0.2328, simple_loss=0.4115, pruned_loss=0.4207, over 1419475.97 frames.], batch size: 18, lr: 2.68e-03
2022-05-26 11:38:01,292 INFO [train.py:842] (2/4) Epoch 1, batch 3800, loss[loss=0.1918, simple_loss=0.3482, pruned_loss=0.1768, over 7128.00 frames.], tot_loss[loss=0.2317, simple_loss=0.411, pruned_loss=0.3791, over 1418033.93 frames.], batch size: 17, lr: 2.68e-03
2022-05-26 11:38:40,179 INFO [train.py:842] (2/4) Epoch 1, batch 3850, loss[loss=0.172, simple_loss=0.315, pruned_loss=0.1449, over 7134.00 frames.], tot_loss[loss=0.2297, simple_loss=0.4088, pruned_loss=0.3436, over 1423884.39 frames.], batch size: 17, lr: 2.67e-03
2022-05-26 11:39:18,907 INFO [train.py:842] (2/4) Epoch 1, batch 3900, loss[loss=0.1986, simple_loss=0.3575, pruned_loss=0.198, over 7218.00 frames.], tot_loss[loss=0.2296, simple_loss=0.4096, pruned_loss=0.3188, over 1421326.64 frames.], batch size: 16, lr: 2.66e-03
2022-05-26 11:39:57,435 INFO [train.py:842] (2/4) Epoch 1, batch 3950, loss[loss=0.3016, simple_loss=0.5338, pruned_loss=0.3474, over 6783.00 frames.], tot_loss[loss=0.2288, simple_loss=0.409, pruned_loss=0.2978, over 1420693.21 frames.], batch size: 31, lr: 2.66e-03
2022-05-26 11:40:36,019 INFO [train.py:842] (2/4) Epoch 1, batch 4000, loss[loss=0.223, simple_loss=0.4038, pruned_loss=0.211, over 7154.00 frames.], tot_loss[loss=0.2289, simple_loss=0.4098, pruned_loss=0.2831, over 1420513.51 frames.], batch size: 26, lr: 2.65e-03
2022-05-26 11:41:14,456 INFO [train.py:842] (2/4) Epoch 1, batch 4050, loss[loss=0.2468, simple_loss=0.4418, pruned_loss=0.2596, over 5187.00 frames.], tot_loss[loss=0.2277, simple_loss=0.4084, pruned_loss=0.2685, over 1422527.06 frames.], batch size: 54, lr: 2.64e-03
2022-05-26 11:41:53,377 INFO [train.py:842] (2/4) Epoch 1, batch 4100, loss[loss=0.2243, simple_loss=0.4046, pruned_loss=0.2204, over 6199.00 frames.], tot_loss[loss=0.2269, simple_loss=0.4075, pruned_loss=0.2571, over 1420728.81 frames.], batch size: 37, lr: 2.64e-03
2022-05-26 11:42:32,078 INFO [train.py:842] (2/4) Epoch 1, batch 4150, loss[loss=0.2117, simple_loss=0.3847, pruned_loss=0.1931, over 7433.00 frames.], tot_loss[loss=0.2262, simple_loss=0.4069, pruned_loss=0.2479, over 1424754.76 frames.], batch size: 20, lr: 2.63e-03
2022-05-26 11:43:10,840 INFO [train.py:842] (2/4) Epoch 1, batch 4200, loss[loss=0.2257, simple_loss=0.4091, pruned_loss=0.212, over 7319.00 frames.], tot_loss[loss=0.2261, simple_loss=0.4071, pruned_loss=0.2411, over 1428402.17 frames.], batch size: 21, lr: 2.63e-03
2022-05-26 11:43:49,375 INFO [train.py:842] (2/4) Epoch 1, batch 4250, loss[loss=0.2364, simple_loss=0.424, pruned_loss=0.2438, over 7143.00 frames.], tot_loss[loss=0.2254, simple_loss=0.4062, pruned_loss=0.235, over 1427554.97 frames.], batch size: 20, lr: 2.62e-03
2022-05-26 11:44:28,192 INFO [train.py:842] (2/4) Epoch 1, batch 4300, loss[loss=0.2225, simple_loss=0.4056, pruned_loss=0.1969, over 7200.00 frames.], tot_loss[loss=0.2244, simple_loss=0.4048, pruned_loss=0.2298, over 1425465.73 frames.], batch size: 22, lr: 2.61e-03
2022-05-26 11:45:06,707 INFO [train.py:842] (2/4) Epoch 1, batch 4350, loss[loss=0.2026, simple_loss=0.3705, pruned_loss=0.1735, over 7156.00 frames.], tot_loss[loss=0.2237, simple_loss=0.4038, pruned_loss=0.2258, over 1427193.85 frames.], batch size: 19, lr: 2.61e-03
2022-05-26 11:45:45,337 INFO [train.py:842] (2/4) Epoch 1, batch 4400, loss[loss=0.2409, simple_loss=0.437, pruned_loss=0.2243, over 7227.00 frames.], tot_loss[loss=0.2247, simple_loss=0.4057, pruned_loss=0.224, over 1427697.07 frames.], batch size: 21, lr: 2.60e-03
2022-05-26 11:46:23,886 INFO [train.py:842] (2/4) Epoch 1, batch 4450, loss[loss=0.2199, simple_loss=0.4006, pruned_loss=0.1955, over 7164.00 frames.], tot_loss[loss=0.2242, simple_loss=0.405, pruned_loss=0.2212, over 1429330.38 frames.], batch size: 19, lr: 2.59e-03
2022-05-26 11:47:02,770 INFO [train.py:842] (2/4) Epoch 1, batch 4500, loss[loss=0.2297, simple_loss=0.4143, pruned_loss=0.2251, over 7258.00 frames.], tot_loss[loss=0.2246, simple_loss=0.406, pruned_loss=0.2191, over 1431693.56 frames.], batch size: 19, lr: 2.59e-03
2022-05-26 11:47:41,422 INFO [train.py:842] (2/4) Epoch 1, batch 4550, loss[loss=0.221, simple_loss=0.3989, pruned_loss=0.2155, over 7075.00 frames.], tot_loss[loss=0.2239, simple_loss=0.4049, pruned_loss=0.2171, over 1429882.31 frames.], batch size: 18, lr: 2.58e-03
2022-05-26 11:48:20,132 INFO [train.py:842] (2/4) Epoch 1, batch 4600, loss[loss=0.1954, simple_loss=0.3568, pruned_loss=0.1696, over 7261.00 frames.], tot_loss[loss=0.2234, simple_loss=0.4043, pruned_loss=0.2148, over 1429543.28 frames.], batch size: 19, lr: 2.57e-03
2022-05-26 11:48:58,606 INFO [train.py:842] (2/4) Epoch 1, batch 4650, loss[loss=0.2041, simple_loss=0.3717, pruned_loss=0.1823, over 7078.00 frames.], tot_loss[loss=0.2222, simple_loss=0.4025, pruned_loss=0.211, over 1430094.05 frames.], batch size: 28, lr: 2.57e-03
2022-05-26 11:49:37,488 INFO [train.py:842] (2/4) Epoch 1, batch 4700, loss[loss=0.1791, simple_loss=0.3273, pruned_loss=0.1541, over 7282.00 frames.], tot_loss[loss=0.221, simple_loss=0.4004, pruned_loss=0.2086, over 1429675.91 frames.], batch size: 17, lr: 2.56e-03
2022-05-26 11:50:15,957 INFO [train.py:842] (2/4) Epoch 1, batch 4750, loss[loss=0.2795, simple_loss=0.4977, pruned_loss=0.306, over 4912.00 frames.], tot_loss[loss=0.2222, simple_loss=0.4027, pruned_loss=0.2096, over 1427308.10 frames.], batch size: 52, lr: 2.55e-03
2022-05-26 11:50:54,731 INFO [train.py:842] (2/4) Epoch 1, batch 4800, loss[loss=0.2358, simple_loss=0.4244, pruned_loss=0.2362, over 7447.00 frames.], tot_loss[loss=0.2225, simple_loss=0.4033, pruned_loss=0.2091, over 1429058.40 frames.], batch size: 20, lr: 2.55e-03
2022-05-26 11:51:33,198 INFO [train.py:842] (2/4) Epoch 1, batch 4850, loss[loss=0.2201, simple_loss=0.4, pruned_loss=0.2007, over 7258.00 frames.], tot_loss[loss=0.2213, simple_loss=0.4015, pruned_loss=0.2066, over 1427047.52 frames.], batch size: 19, lr: 2.54e-03
2022-05-26 11:52:11,922 INFO [train.py:842] (2/4) Epoch 1, batch 4900, loss[loss=0.2089, simple_loss=0.3787, pruned_loss=0.1959, over 7333.00 frames.], tot_loss[loss=0.2206, simple_loss=0.4004, pruned_loss=0.2044, over 1427803.62 frames.], batch size: 20, lr: 2.54e-03
2022-05-26 11:52:50,284 INFO [train.py:842] (2/4) Epoch 1, batch 4950, loss[loss=0.2118, simple_loss=0.3859, pruned_loss=0.1881, over 7339.00 frames.], tot_loss[loss=0.2207, simple_loss=0.4008, pruned_loss=0.2037, over 1423015.08 frames.], batch size: 19, lr: 2.53e-03
2022-05-26 11:53:29,132 INFO [train.py:842] (2/4) Epoch 1, batch 5000, loss[loss=0.1995, simple_loss=0.3659, pruned_loss=0.1654, over 7335.00 frames.], tot_loss[loss=0.2212, simple_loss=0.4018, pruned_loss=0.2034, over 1422468.45 frames.], batch size: 22, lr: 2.52e-03
2022-05-26 11:54:07,521 INFO [train.py:842] (2/4) Epoch 1, batch 5050, loss[loss=0.2854, simple_loss=0.507, pruned_loss=0.3188, over 7315.00 frames.], tot_loss[loss=0.2202, simple_loss=0.4002, pruned_loss=0.2016, over 1422511.40 frames.], batch size: 21, lr: 2.52e-03
2022-05-26 11:54:46,114 INFO [train.py:842] (2/4) Epoch 1, batch 5100, loss[loss=0.2037, simple_loss=0.3767, pruned_loss=0.1532, over 7203.00 frames.], tot_loss[loss=0.2196, simple_loss=0.3992, pruned_loss=0.1998, over 1421079.19 frames.], batch size: 22, lr: 2.51e-03
2022-05-26 11:55:24,650 INFO [train.py:842] (2/4) Epoch 1, batch 5150, loss[loss=0.2074, simple_loss=0.3789, pruned_loss=0.18, over 7428.00 frames.], tot_loss[loss=0.2181, simple_loss=0.397, pruned_loss=0.1969, over 1422650.62 frames.], batch size: 20, lr: 2.50e-03
2022-05-26 11:56:03,338 INFO [train.py:842] (2/4) Epoch 1, batch 5200, loss[loss=0.2363, simple_loss=0.4287, pruned_loss=0.2196, over 7310.00 frames.], tot_loss[loss=0.22, simple_loss=0.4, pruned_loss=0.1996, over 1421798.29 frames.], batch size: 25, lr: 2.50e-03
2022-05-26 11:56:41,767 INFO [train.py:842] (2/4) Epoch 1, batch 5250, loss[loss=0.2516, simple_loss=0.4536, pruned_loss=0.2485, over 5106.00 frames.], tot_loss[loss=0.2185, simple_loss=0.3976, pruned_loss=0.1967, over 1420194.44 frames.], batch size: 52, lr: 2.49e-03
2022-05-26 11:57:20,422 INFO [train.py:842] (2/4) Epoch 1, batch 5300, loss[loss=0.2021, simple_loss=0.3671, pruned_loss=0.1855, over 7285.00 frames.], tot_loss[loss=0.2181, simple_loss=0.397, pruned_loss=0.196, over 1417855.72 frames.], batch size: 17, lr: 2.49e-03
2022-05-26 11:57:58,735 INFO [train.py:842] (2/4) Epoch 1, batch 5350, loss[loss=0.226, simple_loss=0.4112, pruned_loss=0.2046, over 7377.00 frames.], tot_loss[loss=0.2175, simple_loss=0.3961, pruned_loss=0.1944, over 1415488.02 frames.], batch size: 23, lr: 2.48e-03
2022-05-26 11:58:37,511 INFO [train.py:842] (2/4) Epoch 1, batch 5400, loss[loss=0.2339, simple_loss=0.4263, pruned_loss=0.2079, over 7121.00 frames.], tot_loss[loss=0.2176, simple_loss=0.3964, pruned_loss=0.1944, over 1420821.44 frames.], batch size: 28, lr: 2.47e-03
2022-05-26 11:59:16,009 INFO [train.py:842] (2/4) Epoch 1, batch 5450, loss[loss=0.2061, simple_loss=0.3788, pruned_loss=0.1675, over 7146.00 frames.], tot_loss[loss=0.2171, simple_loss=0.3955, pruned_loss=0.1933, over 1422149.73 frames.], batch size: 20, lr: 2.47e-03
2022-05-26 11:59:54,853 INFO [train.py:842] (2/4) Epoch 1, batch 5500, loss[loss=0.2249, simple_loss=0.4051, pruned_loss=0.2231, over 4912.00 frames.], tot_loss[loss=0.2162, simple_loss=0.3939, pruned_loss=0.192, over 1420702.23 frames.], batch size: 53, lr: 2.46e-03
2022-05-26 12:00:33,677 INFO [train.py:842] (2/4) Epoch 1, batch 5550, loss[loss=0.203, simple_loss=0.3702, pruned_loss=0.1791, over 7213.00 frames.], tot_loss[loss=0.2149, simple_loss=0.3917, pruned_loss=0.1905, over 1422702.84 frames.], batch size: 16, lr: 2.45e-03
2022-05-26 12:01:12,579 INFO [train.py:842] (2/4) Epoch 1, batch 5600, loss[loss=0.229, simple_loss=0.4143, pruned_loss=0.2179, over 6523.00 frames.], tot_loss[loss=0.2161, simple_loss=0.3939, pruned_loss=0.1916, over 1424099.55 frames.], batch size: 38, lr: 2.45e-03
2022-05-26 12:01:51,147 INFO [train.py:842] (2/4) Epoch 1, batch 5650, loss[loss=0.2118, simple_loss=0.383, pruned_loss=0.2025, over 7293.00 frames.], tot_loss[loss=0.2161, simple_loss=0.3939, pruned_loss=0.1911, over 1421890.28 frames.], batch size: 17, lr: 2.44e-03
2022-05-26 12:02:29,825 INFO [train.py:842] (2/4) Epoch 1, batch 5700, loss[loss=0.1981, simple_loss=0.3623, pruned_loss=0.1696, over 7428.00 frames.], tot_loss[loss=0.2164, simple_loss=0.3945, pruned_loss=0.1915, over 1422124.06 frames.], batch size: 20, lr: 2.44e-03
2022-05-26 12:03:08,170 INFO [train.py:842] (2/4) Epoch 1, batch 5750, loss[loss=0.2015, simple_loss=0.3695, pruned_loss=0.1679, over 7282.00 frames.], tot_loss[loss=0.2162, simple_loss=0.3942, pruned_loss=0.1905, over 1423536.41 frames.], batch size: 18, lr: 2.43e-03
2022-05-26 12:03:47,051 INFO [train.py:842] (2/4) Epoch 1, batch 5800, loss[loss=0.2072, simple_loss=0.384, pruned_loss=0.1518, over 7224.00 frames.], tot_loss[loss=0.2154, simple_loss=0.3931, pruned_loss=0.1883, over 1428867.78 frames.], batch size: 22, lr: 2.42e-03
2022-05-26 12:04:25,393 INFO [train.py:842] (2/4) Epoch 1, batch 5850, loss[loss=0.2539, simple_loss=0.457, pruned_loss=0.254, over 7431.00 frames.], tot_loss[loss=0.2162, simple_loss=0.3945, pruned_loss=0.1897, over 1427436.12 frames.], batch size: 20, lr: 2.42e-03
2022-05-26 12:05:04,410 INFO [train.py:842] (2/4) Epoch 1, batch 5900, loss[loss=0.2135, simple_loss=0.3921, pruned_loss=0.1745, over 7317.00 frames.], tot_loss[loss=0.214, simple_loss=0.3906, pruned_loss=0.1867, over 1430174.65 frames.], batch size: 21, lr: 2.41e-03
2022-05-26 12:05:43,138 INFO [train.py:842] (2/4) Epoch 1, batch 5950, loss[loss=0.214, simple_loss=0.3881, pruned_loss=0.1994, over 7153.00 frames.], tot_loss[loss=0.2136, simple_loss=0.3901, pruned_loss=0.1858, over 1430791.39 frames.], batch size: 19, lr: 2.41e-03
2022-05-26 12:06:21,960 INFO [train.py:842] (2/4) Epoch 1, batch 6000, loss[loss=0.3961, simple_loss=0.3764, pruned_loss=0.2079, over 7089.00 frames.], tot_loss[loss=0.2141, simple_loss=0.3879, pruned_loss=0.1836, over 1427067.98 frames.], batch size: 26, lr: 2.40e-03
2022-05-26 12:06:21,961 INFO [train.py:862] (2/4) Computing validation loss
2022-05-26 12:06:31,825 INFO [train.py:871] (2/4) Epoch 1, validation: loss=0.2892, simple_loss=0.3436, pruned_loss=0.1174, over 868885.00 frames.
2022-05-26 12:07:10,557 INFO [train.py:842] (2/4) Epoch 1, batch 6050, loss[loss=0.4044, simple_loss=0.4017, pruned_loss=0.2035, over 6770.00 frames.], tot_loss[loss=0.2587, simple_loss=0.3921, pruned_loss=0.1902, over 1423643.44 frames.], batch size: 15, lr: 2.39e-03
2022-05-26 12:07:49,766 INFO [train.py:842] (2/4) Epoch 1, batch 6100, loss[loss=0.2982, simple_loss=0.3261, pruned_loss=0.1351, over 6825.00 frames.], tot_loss[loss=0.2853, simple_loss=0.391, pruned_loss=0.1889, over 1426300.55 frames.], batch size: 15, lr: 2.39e-03
2022-05-26 12:08:28,486 INFO [train.py:842] (2/4) Epoch 1, batch 6150, loss[loss=0.4848, simple_loss=0.4505, pruned_loss=0.2595, over 7107.00 frames.], tot_loss[loss=0.3085, simple_loss=0.393, pruned_loss=0.1891, over 1426558.18 frames.], batch size: 21, lr: 2.38e-03
2022-05-26 12:09:07,159 INFO [train.py:842] (2/4) Epoch 1, batch 6200, loss[loss=0.378, simple_loss=0.3922, pruned_loss=0.1819, over 7326.00 frames.], tot_loss[loss=0.3229, simple_loss=0.3925, pruned_loss=0.1867, over 1426648.85 frames.], batch size: 22, lr: 2.38e-03
2022-05-26 12:09:45,799 INFO [train.py:842] (2/4) Epoch 1, batch 6250, loss[loss=0.3425, simple_loss=0.3728, pruned_loss=0.1561, over 7380.00 frames.], tot_loss[loss=0.3331, simple_loss=0.3911, pruned_loss=0.1841, over 1428801.42 frames.], batch size: 23, lr: 2.37e-03
2022-05-26 12:10:25,216 INFO [train.py:842] (2/4) Epoch 1, batch 6300, loss[loss=0.3433, simple_loss=0.3786, pruned_loss=0.154, over 7276.00 frames.], tot_loss[loss=0.3426, simple_loss=0.3907, pruned_loss=0.1836, over 1426265.15 frames.], batch size: 18, lr: 2.37e-03
2022-05-26 12:11:03,832 INFO [train.py:842] (2/4) Epoch 1, batch 6350, loss[loss=0.4051, simple_loss=0.4162, pruned_loss=0.1969, over 7147.00 frames.], tot_loss[loss=0.3499, simple_loss=0.391, pruned_loss=0.1827, over 1426883.57 frames.], batch size: 20, lr: 2.36e-03
2022-05-26 12:11:42,700 INFO [train.py:842] (2/4) Epoch 1, batch 6400, loss[loss=0.3709, simple_loss=0.3859, pruned_loss=0.1779, over 7361.00 frames.], tot_loss[loss=0.3569, simple_loss=0.3922, pruned_loss=0.1829, over 1426573.51 frames.], batch size: 19, lr: 2.35e-03
2022-05-26 12:12:21,091 INFO [train.py:842] (2/4) Epoch 1, batch 6450, loss[loss=0.3653, simple_loss=0.4005, pruned_loss=0.165, over 7123.00 frames.], tot_loss[loss=0.3607, simple_loss=0.3925, pruned_loss=0.1817, over 1426789.31 frames.], batch size: 21, lr: 2.35e-03
2022-05-26 12:12:59,891 INFO [train.py:842] (2/4) Epoch 1, batch 6500, loss[loss=0.3322, simple_loss=0.3541, pruned_loss=0.1551, over 7133.00 frames.], tot_loss[loss=0.3632, simple_loss=0.3919, pruned_loss=0.1806, over 1423385.57 frames.], batch size: 17, lr: 2.34e-03
2022-05-26 12:13:38,143 INFO [train.py:842] (2/4) Epoch 1, batch 6550, loss[loss=0.3251, simple_loss=0.378, pruned_loss=0.1361, over 7313.00 frames.], tot_loss[loss=0.3623, simple_loss=0.3906, pruned_loss=0.1774, over 1418475.54 frames.], batch size: 21, lr: 2.34e-03
2022-05-26 12:14:17,054 INFO [train.py:842] (2/4) Epoch 1, batch 6600, loss[loss=0.361, simple_loss=0.4017, pruned_loss=0.1601, over 7186.00 frames.], tot_loss[loss=0.3638, simple_loss=0.3905, pruned_loss=0.1767, over 1423835.56 frames.], batch size: 26, lr: 2.33e-03
2022-05-26 12:14:55,785 INFO [train.py:842] (2/4) Epoch 1, batch 6650, loss[loss=0.3325, simple_loss=0.3755, pruned_loss=0.1447, over 7074.00 frames.], tot_loss[loss=0.3684, simple_loss=0.3929, pruned_loss=0.1782, over 1422489.86 frames.], batch size: 18, lr: 2.33e-03
2022-05-26 12:15:34,734 INFO [train.py:842] (2/4) Epoch 1, batch 6700, loss[loss=0.5504, simple_loss=0.4992, pruned_loss=0.3008, over 5152.00 frames.], tot_loss[loss=0.3685, simple_loss=0.3928, pruned_loss=0.177, over 1424359.18 frames.], batch size: 52, lr: 2.32e-03
2022-05-26 12:16:13,264 INFO [train.py:842] (2/4) Epoch 1, batch 6750, loss[loss=0.3277, simple_loss=0.3771, pruned_loss=0.1392, over 7296.00 frames.], tot_loss[loss=0.3667, simple_loss=0.3914, pruned_loss=0.1748, over 1426669.84 frames.], batch size: 24, lr: 2.31e-03
2022-05-26 12:16:52,110 INFO [train.py:842] (2/4) Epoch 1, batch 6800, loss[loss=0.3374, simple_loss=0.3713, pruned_loss=0.1517, over 7427.00 frames.], tot_loss[loss=0.3659, simple_loss=0.3909, pruned_loss=0.1734, over 1428318.85 frames.], batch size: 20, lr: 2.31e-03
2022-05-26 12:17:30,583 INFO [train.py:842] (2/4) Epoch 1, batch 6850, loss[loss=0.2975, simple_loss=0.3454, pruned_loss=0.1248, over 7192.00 frames.], tot_loss[loss=0.3628, simple_loss=0.3887, pruned_loss=0.1707, over 1426723.86 frames.], batch size: 23, lr: 2.30e-03
2022-05-26 12:18:19,073 INFO [train.py:842] (2/4) Epoch 1, batch 6900, loss[loss=0.3725, simple_loss=0.41, pruned_loss=0.1675, over 7420.00 frames.], tot_loss[loss=0.3615, simple_loss=0.3873, pruned_loss=0.1697, over 1426990.82 frames.], batch size: 21, lr: 2.30e-03
2022-05-26 12:18:57,536 INFO [train.py:842] (2/4) Epoch 1, batch 6950, loss[loss=0.3657, simple_loss=0.3899, pruned_loss=0.1708, over 7270.00 frames.], tot_loss[loss=0.3649, simple_loss=0.3895, pruned_loss=0.1716, over 1422930.97 frames.], batch size: 18, lr: 2.29e-03
2022-05-26 12:19:36,275 INFO [train.py:842] (2/4) Epoch 1, batch 7000, loss[loss=0.3225, simple_loss=0.3552, pruned_loss=0.145, over 7163.00 frames.], tot_loss[loss=0.3643, simple_loss=0.3892, pruned_loss=0.1708, over 1420907.20 frames.], batch size: 18, lr: 2.29e-03
2022-05-26 12:20:14,722 INFO [train.py:842] (2/4) Epoch 1, batch 7050, loss[loss=0.3598, simple_loss=0.3836, pruned_loss=0.168, over 7149.00 frames.], tot_loss[loss=0.3639, simple_loss=0.3889, pruned_loss=0.1703, over 1422074.78 frames.], batch size: 19, lr: 2.28e-03
2022-05-26 12:20:53,598 INFO [train.py:842] (2/4) Epoch 1, batch 7100, loss[loss=0.3407, simple_loss=0.3786, pruned_loss=0.1514, over 7331.00 frames.], tot_loss[loss=0.3621, simple_loss=0.3877, pruned_loss=0.1689, over 1424534.91 frames.], batch size: 22, lr: 2.28e-03
2022-05-26 12:21:32,657 INFO [train.py:842] (2/4) Epoch 1, batch 7150, loss[loss=0.3917, simple_loss=0.4139, pruned_loss=0.1848, over 7210.00 frames.], tot_loss[loss=0.3617, simple_loss=0.3872, pruned_loss=0.1686, over 1419051.74 frames.], batch size: 22, lr: 2.27e-03
2022-05-26 12:22:11,491 INFO [train.py:842] (2/4) Epoch 1, batch 7200, loss[loss=0.3833, simple_loss=0.4099, pruned_loss=0.1784, over 7335.00 frames.], tot_loss[loss=0.3617, simple_loss=0.3881, pruned_loss=0.1681, over 1421303.77 frames.], batch size: 22, lr: 2.27e-03
2022-05-26 12:22:50,063 INFO [train.py:842] (2/4) Epoch 1, batch 7250, loss[loss=0.3557, simple_loss=0.3766, pruned_loss=0.1674, over 7063.00 frames.], tot_loss[loss=0.3623, simple_loss=0.3885, pruned_loss=0.1683, over 1417179.07 frames.], batch size: 18, lr: 2.26e-03
2022-05-26 12:23:28,692 INFO [train.py:842] (2/4) Epoch 1, batch 7300, loss[loss=0.3684, simple_loss=0.3976, pruned_loss=0.1696, over 7142.00 frames.], tot_loss[loss=0.3646, simple_loss=0.3904, pruned_loss=0.1697, over 1416661.34 frames.], batch size: 28, lr: 2.26e-03
2022-05-26 12:24:07,150 INFO [train.py:842] (2/4) Epoch 1, batch 7350, loss[loss=0.3053, simple_loss=0.3346, pruned_loss=0.1379, over 7196.00 frames.], tot_loss[loss=0.3606, simple_loss=0.3878, pruned_loss=0.1669, over 1416139.35 frames.], batch size: 16, lr: 2.25e-03
2022-05-26 12:24:45,814 INFO [train.py:842] (2/4) Epoch 1, batch 7400, loss[loss=0.3059, simple_loss=0.3408, pruned_loss=0.1355, over 7407.00 frames.], tot_loss[loss=0.3615, simple_loss=0.3885, pruned_loss=0.1674, over 1416336.84 frames.], batch size: 18, lr: 2.24e-03
2022-05-26 12:25:24,571 INFO [train.py:842] (2/4) Epoch 1, batch 7450, loss[loss=0.3151, simple_loss=0.3571, pruned_loss=0.1365, over 7390.00 frames.], tot_loss[loss=0.3616, simple_loss=0.3892, pruned_loss=0.1672, over 1424432.24 frames.], batch size: 18, lr: 2.24e-03
2022-05-26 12:26:03,336 INFO [train.py:842] (2/4) Epoch 1, batch 7500, loss[loss=0.4111, simple_loss=0.4157, pruned_loss=0.2033, over 7430.00 frames.], tot_loss[loss=0.3615, simple_loss=0.3892, pruned_loss=0.167, over 1421709.57 frames.], batch size: 20, lr: 2.23e-03
2022-05-26 12:26:41,950 INFO [train.py:842] (2/4) Epoch 1, batch 7550, loss[loss=0.3141, simple_loss=0.3535, pruned_loss=0.1374, over 7320.00 frames.], tot_loss[loss=0.3576, simple_loss=0.3862, pruned_loss=0.1646, over 1419974.59 frames.], batch size: 20, lr: 2.23e-03
2022-05-26 12:27:21,041 INFO [train.py:842] (2/4) Epoch 1, batch 7600, loss[loss=0.2937, simple_loss=0.3492, pruned_loss=0.1191, over 7398.00 frames.], tot_loss[loss=0.3534, simple_loss=0.3828, pruned_loss=0.1621, over 1423634.17 frames.], batch size: 21, lr: 2.22e-03
2022-05-26 12:28:28,318 INFO [train.py:842] (2/4) Epoch 1, batch 7650, loss[loss=0.4442, simple_loss=0.4329, pruned_loss=0.2277, over 7336.00 frames.], tot_loss[loss=0.3564, simple_loss=0.3854, pruned_loss=0.1638, over 1426965.08 frames.], batch size: 20, lr: 2.22e-03
2022-05-26 12:29:07,139 INFO [train.py:842] (2/4) Epoch 1, batch 7700, loss[loss=0.3403, simple_loss=0.3894, pruned_loss=0.1456, over 7221.00 frames.], tot_loss[loss=0.3565, simple_loss=0.3853, pruned_loss=0.1638, over 1424548.33 frames.], batch size: 20, lr: 2.21e-03
2022-05-26 12:29:46,009 INFO [train.py:842] (2/4) Epoch 1, batch 7750, loss[loss=0.3226, simple_loss=0.3562, pruned_loss=0.1445, over 7363.00 frames.], tot_loss[loss=0.3562, simple_loss=0.3854, pruned_loss=0.1636, over 1425735.77 frames.], batch size: 19, lr: 2.21e-03
2022-05-26 12:30:24,812 INFO [train.py:842] (2/4) Epoch 1, batch 7800, loss[loss=0.4322, simple_loss=0.4513, pruned_loss=0.2066, over 7050.00 frames.], tot_loss[loss=0.356, simple_loss=0.3857, pruned_loss=0.1632, over 1427870.61 frames.], batch size: 28, lr: 2.20e-03
2022-05-26 12:31:03,146 INFO [train.py:842] (2/4) Epoch 1, batch 7850, loss[loss=0.3964, simple_loss=0.4138, pruned_loss=0.1895, over 7278.00 frames.], tot_loss[loss=0.3554, simple_loss=0.3861, pruned_loss=0.1624, over 1430544.80 frames.], batch size: 24, lr: 2.20e-03
2022-05-26 12:31:41,887 INFO [train.py:842] (2/4) Epoch 1, batch 7900, loss[loss=0.3635, simple_loss=0.3854, pruned_loss=0.1707, over 7421.00 frames.], tot_loss[loss=0.3589, simple_loss=0.3882, pruned_loss=0.1648, over 1426870.69 frames.], batch size: 20, lr: 2.19e-03
2022-05-26 12:32:20,417 INFO [train.py:842] (2/4) Epoch 1, batch 7950, loss[loss=0.4018, simple_loss=0.422, pruned_loss=0.1908, over 6600.00 frames.], tot_loss[loss=0.3558, simple_loss=0.3853, pruned_loss=0.1632, over 1422776.95 frames.], batch size: 38, lr: 2.19e-03
2022-05-26 12:33:01,914 INFO [train.py:842] (2/4) Epoch 1, batch 8000, loss[loss=0.3211, simple_loss=0.3484, pruned_loss=0.1469, over 7145.00 frames.], tot_loss[loss=0.3529, simple_loss=0.3837, pruned_loss=0.1611, over 1425701.26 frames.], batch size: 17, lr: 2.18e-03
2022-05-26 12:33:40,595 INFO [train.py:842] (2/4) Epoch 1, batch 8050, loss[loss=0.2947, simple_loss=0.3369, pruned_loss=0.1262, over 7144.00 frames.], tot_loss[loss=0.352, simple_loss=0.3832, pruned_loss=0.1605, over 1429894.34 frames.], batch size: 17, lr: 2.18e-03
2022-05-26 12:34:19,297 INFO [train.py:842] (2/4) Epoch 1, batch 8100, loss[loss=0.3521, simple_loss=0.3737, pruned_loss=0.1652, over 7258.00 frames.], tot_loss[loss=0.3517, simple_loss=0.3831, pruned_loss=0.1601, over 1428721.46 frames.], batch size: 19, lr: 2.17e-03
2022-05-26 12:34:57,730 INFO [train.py:842] (2/4) Epoch 1, batch 8150, loss[loss=0.3919, simple_loss=0.4257, pruned_loss=0.1791, over 7205.00 frames.], tot_loss[loss=0.3569, simple_loss=0.387, pruned_loss=0.1634, over 1423314.63 frames.], batch size: 22, lr: 2.17e-03
2022-05-26 12:35:36,455 INFO [train.py:842] (2/4) Epoch 1, batch 8200, loss[loss=0.3517, simple_loss=0.3783, pruned_loss=0.1626, over 7172.00 frames.], tot_loss[loss=0.3534, simple_loss=0.385, pruned_loss=0.1609, over 1421239.06 frames.], batch size: 18, lr: 2.16e-03
2022-05-26 12:36:15,274 INFO [train.py:842] (2/4) Epoch 1, batch 8250, loss[loss=0.336, simple_loss=0.3693, pruned_loss=0.1514, over 7256.00 frames.], tot_loss[loss=0.354, simple_loss=0.3845, pruned_loss=0.1618, over 1421967.53 frames.], batch size: 19, lr: 2.16e-03
2022-05-26 12:36:53,989 INFO [train.py:842] (2/4) Epoch 1, batch 8300, loss[loss=0.4806, simple_loss=0.4758, pruned_loss=0.2427, over 6716.00 frames.], tot_loss[loss=0.3542, simple_loss=0.3851, pruned_loss=0.1616, over 1421593.56 frames.], batch size: 31, lr: 2.15e-03
2022-05-26 12:37:32,673 INFO [train.py:842] (2/4) Epoch 1, batch 8350, loss[loss=0.2792, simple_loss=0.3291, pruned_loss=0.1146, over 7284.00 frames.], tot_loss[loss=0.3506, simple_loss=0.3826, pruned_loss=0.1593, over 1424765.26 frames.], batch size: 18, lr: 2.15e-03
2022-05-26 12:38:11,583 INFO [train.py:842] (2/4) Epoch 1, batch 8400, loss[loss=0.375, simple_loss=0.4149, pruned_loss=0.1675, over 7292.00 frames.], tot_loss[loss=0.3495, simple_loss=0.3823, pruned_loss=0.1583, over 1424061.59 frames.], batch size: 25, lr: 2.15e-03
2022-05-26 12:38:49,958 INFO [train.py:842] (2/4) Epoch 1, batch 8450, loss[loss=0.3406, simple_loss=0.3843, pruned_loss=0.1485, over 7118.00 frames.], tot_loss[loss=0.3472, simple_loss=0.3812, pruned_loss=0.1566, over 1423697.80 frames.], batch size: 21, lr: 2.14e-03
2022-05-26 12:39:28,659 INFO [train.py:842] (2/4) Epoch 1, batch 8500, loss[loss=0.3321, simple_loss=0.3761, pruned_loss=0.1441, over 7152.00 frames.], tot_loss[loss=0.3483, simple_loss=0.3821, pruned_loss=0.1573, over 1422789.74 frames.], batch size: 20, lr: 2.14e-03
2022-05-26 12:40:07,534 INFO [train.py:842] (2/4) Epoch 1, batch 8550, loss[loss=0.4087, simple_loss=0.4221, pruned_loss=0.1977, over 7155.00 frames.], tot_loss[loss=0.3456, simple_loss=0.38, pruned_loss=0.1555, over 1424630.29 frames.], batch size: 18, lr: 2.13e-03
2022-05-26 12:40:46,238 INFO [train.py:842] (2/4) Epoch 1, batch 8600, loss[loss=0.3424, simple_loss=0.3788, pruned_loss=0.153, over 7063.00 frames.], tot_loss[loss=0.3488, simple_loss=0.3821, pruned_loss=0.1578, over 1421021.15 frames.], batch size: 18, lr: 2.13e-03
2022-05-26 12:41:24,617 INFO [train.py:842] (2/4) Epoch 1, batch 8650, loss[loss=0.3058, simple_loss=0.3672, pruned_loss=0.1222, over 7325.00 frames.], tot_loss[loss=0.3499, simple_loss=0.3833, pruned_loss=0.1582, over 1413581.81 frames.], batch size: 21, lr: 2.12e-03
2022-05-26 12:42:03,384 INFO [train.py:842] (2/4) Epoch 1, batch 8700, loss[loss=0.3003, simple_loss=0.3352, pruned_loss=0.1327, over 7145.00 frames.], tot_loss[loss=0.3506, simple_loss=0.3842, pruned_loss=0.1585, over 1410789.67 frames.], batch size: 17, lr: 2.12e-03
2022-05-26 12:42:41,796 INFO [train.py:842] (2/4) Epoch 1, batch 8750, loss[loss=0.3491, simple_loss=0.3892, pruned_loss=0.1546, over 6672.00 frames.], tot_loss[loss=0.3527, simple_loss=0.3857, pruned_loss=0.1599, over 1412728.29 frames.], batch size: 31, lr: 2.11e-03
2022-05-26 12:43:20,372 INFO [train.py:842] (2/4) Epoch 1, batch 8800, loss[loss=0.298, simple_loss=0.3481, pruned_loss=0.124, over 6794.00 frames.], tot_loss[loss=0.3484, simple_loss=0.3829, pruned_loss=0.1569, over 1416195.97 frames.], batch size: 31, lr: 2.11e-03
2022-05-26 12:43:58,596 INFO [train.py:842] (2/4) Epoch 1, batch 8850, loss[loss=0.5767, simple_loss=0.5313, pruned_loss=0.311, over 4719.00 frames.], tot_loss[loss=0.3511, simple_loss=0.385, pruned_loss=0.1586, over 1411483.04 frames.], batch size: 52, lr: 2.10e-03
2022-05-26 12:44:37,288 INFO [train.py:842] (2/4) Epoch 1, batch 8900, loss[loss=0.3234, simple_loss=0.3579, pruned_loss=0.1444, over 6984.00 frames.], tot_loss[loss=0.3513, simple_loss=0.3852, pruned_loss=0.1588, over 1402973.48 frames.], batch size: 16, lr: 2.10e-03
2022-05-26 12:45:15,601 INFO [train.py:842] (2/4) Epoch 1, batch 8950, loss[loss=0.3206, simple_loss=0.3772, pruned_loss=0.1321, over 7313.00 frames.], tot_loss[loss=0.3506, simple_loss=0.3853, pruned_loss=0.1579, over 1405404.31 frames.], batch size: 21, lr: 2.10e-03
2022-05-26 12:45:54,260 INFO [train.py:842] (2/4) Epoch 1, batch 9000, loss[loss=0.3897, simple_loss=0.4018, pruned_loss=0.1888, over 5252.00 frames.], tot_loss[loss=0.3518, simple_loss=0.3863, pruned_loss=0.1587, over 1399089.45 frames.], batch size: 52, lr: 2.09e-03
2022-05-26 12:45:54,260 INFO [train.py:862] (2/4) Computing validation loss
2022-05-26 12:46:03,568 INFO [train.py:871] (2/4) Epoch 1, validation: loss=0.2508, simple_loss=0.3369, pruned_loss=0.08236, over 868885.00 frames.
2022-05-26 12:46:41,379 INFO [train.py:842] (2/4) Epoch 1, batch 9050, loss[loss=0.3581, simple_loss=0.3855, pruned_loss=0.1653, over 5468.00 frames.], tot_loss[loss=0.3534, simple_loss=0.3877, pruned_loss=0.1595, over 1387939.13 frames.], batch size: 52, lr: 2.09e-03
2022-05-26 12:47:18,742 INFO [train.py:842] (2/4) Epoch 1, batch 9100, loss[loss=0.382, simple_loss=0.4193, pruned_loss=0.1723, over 4972.00 frames.], tot_loss[loss=0.3568, simple_loss=0.3905, pruned_loss=0.1615, over 1344992.14 frames.], batch size: 52, lr: 2.08e-03
2022-05-26 12:47:56,195 INFO [train.py:842] (2/4) Epoch 1, batch 9150, loss[loss=0.374, simple_loss=0.4012, pruned_loss=0.1734, over 5146.00 frames.], tot_loss[loss=0.3639, simple_loss=0.3948, pruned_loss=0.1665, over 1286292.09 frames.], batch size: 52, lr: 2.08e-03
2022-05-26 12:48:47,790 INFO [train.py:842] (2/4) Epoch 2, batch 0, loss[loss=0.417, simple_loss=0.4321, pruned_loss=0.2009, over 7186.00 frames.], tot_loss[loss=0.417, simple_loss=0.4321, pruned_loss=0.2009, over 7186.00 frames.], batch size: 26, lr: 2.06e-03
2022-05-26 12:49:27,344 INFO [train.py:842] (2/4) Epoch 2, batch 50, loss[loss=0.2862, simple_loss=0.343, pruned_loss=0.1147, over 7234.00 frames.], tot_loss[loss=0.3374, simple_loss=0.3754, pruned_loss=0.1498, over 312324.82 frames.], batch size: 20, lr: 2.06e-03
2022-05-26 12:50:06,217 INFO [train.py:842] (2/4) Epoch 2, batch 100, loss[loss=0.4156, simple_loss=0.4319, pruned_loss=0.1997, over 7427.00 frames.], tot_loss[loss=0.3457, simple_loss=0.3796, pruned_loss=0.156, over 560210.94 frames.], batch size: 20, lr: 2.05e-03
2022-05-26 12:50:45,170 INFO [train.py:842] (2/4) Epoch 2, batch 150, loss[loss=0.3196, simple_loss=0.3802, pruned_loss=0.1295, over 7327.00 frames.], tot_loss[loss=0.3413, simple_loss=0.378, pruned_loss=0.1523, over 751075.15 frames.], batch size: 20, lr: 2.05e-03
2022-05-26 12:51:23,759 INFO [train.py:842] (2/4) Epoch 2, batch 200, loss[loss=0.419, simple_loss=0.4197, pruned_loss=0.2091, over 7166.00 frames.], tot_loss[loss=0.3399, simple_loss=0.3769, pruned_loss=0.1514, over 901016.37 frames.], batch size: 19, lr: 2.04e-03
2022-05-26 12:52:03,051 INFO [train.py:842] (2/4) Epoch 2, batch 250, loss[loss=0.3512, simple_loss=0.3811, pruned_loss=0.1607, over 7387.00 frames.], tot_loss[loss=0.3418, simple_loss=0.378, pruned_loss=0.1528, over 1015787.87 frames.], batch size: 23, lr: 2.04e-03
2022-05-26 12:52:42,055 INFO [train.py:842] (2/4) Epoch 2, batch 300, loss[loss=0.3652, simple_loss=0.3875, pruned_loss=0.1715, over 7270.00 frames.], tot_loss[loss=0.3423, simple_loss=0.3788, pruned_loss=0.1529, over 1104881.58 frames.], batch size: 19, lr: 2.03e-03
2022-05-26 12:53:21,154 INFO [train.py:842] (2/4) Epoch 2, batch 350, loss[loss=0.3387, simple_loss=0.3733, pruned_loss=0.1521, over 7218.00 frames.], tot_loss[loss=0.3365, simple_loss=0.3749, pruned_loss=0.149, over 1174002.75 frames.], batch size: 21, lr: 2.03e-03
2022-05-26 12:53:59,748 INFO [train.py:842] (2/4) Epoch 2, batch 400, loss[loss=0.3891, simple_loss=0.4112, pruned_loss=0.1835, over 7142.00 frames.], tot_loss[loss=0.3369, simple_loss=0.3756, pruned_loss=0.1491, over 1230889.42 frames.], batch size: 20, lr: 2.03e-03
2022-05-26 12:54:38,379 INFO [train.py:842] (2/4) Epoch 2, batch 450, loss[loss=0.3874, simple_loss=0.42, pruned_loss=0.1774, over 7159.00 frames.], tot_loss[loss=0.3358, simple_loss=0.3752, pruned_loss=0.1482, over 1276071.47 frames.], batch size: 19, lr: 2.02e-03
2022-05-26 12:55:16,799 INFO [train.py:842] (2/4) Epoch 2, batch 500, loss[loss=0.2966, simple_loss=0.3338, pruned_loss=0.1297, over 7183.00 frames.], tot_loss[loss=0.3336, simple_loss=0.374, pruned_loss=0.1466, over 1307951.72 frames.], batch size: 18, lr: 2.02e-03
2022-05-26 12:55:56,046 INFO [train.py:842] (2/4) Epoch 2, batch 550, loss[loss=0.3128, simple_loss=0.345, pruned_loss=0.1403, over 7347.00 frames.], tot_loss[loss=0.3346, simple_loss=0.3744, pruned_loss=0.1474, over 1332808.02 frames.], batch size: 19, lr: 2.01e-03
2022-05-26 12:56:34,291 INFO [train.py:842] (2/4) Epoch 2, batch 600, loss[loss=0.346, simple_loss=0.38, pruned_loss=0.1561, over 7398.00 frames.], tot_loss[loss=0.3371, simple_loss=0.3767, pruned_loss=0.1487, over 1354032.62 frames.], batch size: 23, lr: 2.01e-03
2022-05-26 12:57:13,119 INFO [train.py:842] (2/4) Epoch 2, batch 650, loss[loss=0.3105, simple_loss=0.3468, pruned_loss=0.1371, over 7271.00 frames.], tot_loss[loss=0.3334, simple_loss=0.3735, pruned_loss=0.1467, over 1368213.90 frames.], batch size: 18, lr: 2.01e-03
2022-05-26 12:57:51,836 INFO [train.py:842] (2/4) Epoch 2, batch 700, loss[loss=0.4465, simple_loss=0.4334, pruned_loss=0.2298, over 5203.00 frames.], tot_loss[loss=0.3306, simple_loss=0.3715, pruned_loss=0.1448, over 1380117.64 frames.], batch size: 53, lr: 2.00e-03
2022-05-26 12:58:30,909 INFO [train.py:842] (2/4) Epoch 2, batch 750, loss[loss=0.2934, simple_loss=0.3515, pruned_loss=0.1176, over 7255.00 frames.], tot_loss[loss=0.3343, simple_loss=0.3738, pruned_loss=0.1474, over 1391635.39 frames.], batch size: 19, lr: 2.00e-03
2022-05-26 12:59:09,531 INFO [train.py:842] (2/4) Epoch 2, batch 800, loss[loss=0.3262, simple_loss=0.3661, pruned_loss=0.1432, over 7060.00 frames.], tot_loss[loss=0.3352, simple_loss=0.3748, pruned_loss=0.1478, over 1401356.14 frames.], batch size: 18, lr: 1.99e-03
2022-05-26 12:59:48,503 INFO [train.py:842] (2/4) Epoch 2, batch 850, loss[loss=0.3852, simple_loss=0.4099, pruned_loss=0.1802, over 7329.00 frames.], tot_loss[loss=0.3324, simple_loss=0.3731, pruned_loss=0.1458, over 1408430.79 frames.], batch size: 20, lr: 1.99e-03
2022-05-26 13:00:27,143 INFO [train.py:842] (2/4) Epoch 2, batch 900, loss[loss=0.2886, simple_loss=0.3432, pruned_loss=0.117, over 7428.00 frames.], tot_loss[loss=0.3312, simple_loss=0.3723, pruned_loss=0.145, over 1412458.51 frames.], batch size: 20, lr: 1.99e-03
2022-05-26 13:01:06,368 INFO [train.py:842] (2/4) Epoch 2, batch 950, loss[loss=0.2896, simple_loss=0.3323, pruned_loss=0.1235, over 7251.00 frames.], tot_loss[loss=0.3309, simple_loss=0.3727, pruned_loss=0.1445, over 1415187.68 frames.], batch size: 19, lr: 1.98e-03
2022-05-26 13:01:45,058 INFO [train.py:842] (2/4) Epoch 2, batch 1000, loss[loss=0.3285, simple_loss=0.3713, pruned_loss=0.1428, over 6851.00 frames.], tot_loss[loss=0.3306, simple_loss=0.3726, pruned_loss=0.1443, over 1417102.04 frames.], batch size: 31, lr: 1.98e-03
2022-05-26 13:02:24,223 INFO [train.py:842] (2/4) Epoch 2, batch 1050, loss[loss=0.3069, simple_loss=0.3645, pruned_loss=0.1247, over 7428.00 frames.], tot_loss[loss=0.3304, simple_loss=0.3724, pruned_loss=0.1442, over 1419696.01 frames.], batch size: 20, lr: 1.97e-03
2022-05-26 13:03:02,483 INFO [train.py:842] (2/4) Epoch 2, batch 1100, loss[loss=0.2804, simple_loss=0.3223, pruned_loss=0.1192, over 7171.00 frames.], tot_loss[loss=0.3324, simple_loss=0.374, pruned_loss=0.1454, over 1421020.59 frames.], batch size: 18, lr: 1.97e-03
2022-05-26 13:03:41,563 INFO [train.py:842] (2/4) Epoch 2, batch 1150, loss[loss=0.3343, simple_loss=0.3838, pruned_loss=0.1424, over 7234.00 frames.], tot_loss[loss=0.3301, simple_loss=0.3721, pruned_loss=0.144, over 1424918.57 frames.], batch size: 20, lr: 1.97e-03
2022-05-26 13:04:19,992 INFO [train.py:842] (2/4) Epoch 2, batch 1200, loss[loss=0.413, simple_loss=0.4232, pruned_loss=0.2014, over 7012.00 frames.], tot_loss[loss=0.3294, simple_loss=0.3714, pruned_loss=0.1437, over 1423602.27 frames.], batch size: 28, lr: 1.96e-03
2022-05-26 13:04:58,738 INFO [train.py:842] (2/4) Epoch 2, batch 1250, loss[loss=0.2585, simple_loss=0.3123, pruned_loss=0.1023, over 7284.00 frames.], tot_loss[loss=0.3304, simple_loss=0.3724, pruned_loss=0.1442, over 1423002.53 frames.], batch size: 18, lr: 1.96e-03
2022-05-26 13:05:37,175 INFO [train.py:842] (2/4) Epoch 2, batch 1300, loss[loss=0.3276, simple_loss=0.3785, pruned_loss=0.1383, over 7212.00 frames.], tot_loss[loss=0.3291, simple_loss=0.3716, pruned_loss=0.1433, over 1416893.03 frames.], batch size: 21, lr: 1.95e-03
2022-05-26 13:06:15,946 INFO [train.py:842] (2/4) Epoch 2, batch 1350, loss[loss=0.3599, simple_loss=0.3787, pruned_loss=0.1706, over 7277.00 frames.], tot_loss[loss=0.33, simple_loss=0.3721, pruned_loss=0.1439, over 1419980.20 frames.], batch size: 17, lr: 1.95e-03
2022-05-26 13:06:54,263 INFO [train.py:842] (2/4) Epoch 2, batch 1400, loss[loss=0.3561, simple_loss=0.4089, pruned_loss=0.1517, over 7209.00 frames.], tot_loss[loss=0.3321, simple_loss=0.3735, pruned_loss=0.1454, over 1417966.83 frames.], batch size: 21, lr: 1.95e-03
2022-05-26 13:07:33,450 INFO [train.py:842] (2/4) Epoch 2, batch 1450, loss[loss=0.3307, simple_loss=0.3776, pruned_loss=0.1418, over 7187.00 frames.], tot_loss[loss=0.3326, simple_loss=0.3737, pruned_loss=0.1457, over 1421816.97 frames.], batch size: 26, lr: 1.94e-03
2022-05-26 13:08:12,021 INFO [train.py:842] (2/4) Epoch 2, batch 1500, loss[loss=0.3977, simple_loss=0.4169, pruned_loss=0.1893, over 6554.00 frames.], tot_loss[loss=0.3323, simple_loss=0.3736, pruned_loss=0.1455, over 1421318.16 frames.], batch size: 38, lr: 1.94e-03
2022-05-26 13:08:50,744 INFO [train.py:842] (2/4) Epoch 2, batch 1550, loss[loss=0.3315, simple_loss=0.3789, pruned_loss=0.1421, over 7422.00 frames.], tot_loss[loss=0.3317, simple_loss=0.3736, pruned_loss=0.1449, over 1424804.86 frames.], batch size: 20, lr: 1.94e-03
2022-05-26 13:09:29,434 INFO [train.py:842] (2/4) Epoch 2, batch 1600, loss[loss=0.2713, simple_loss=0.3242, pruned_loss=0.1092, over 7178.00 frames.], tot_loss[loss=0.3297, simple_loss=0.3717, pruned_loss=0.1439, over 1424087.19 frames.], batch size: 18, lr: 1.93e-03
2022-05-26 13:10:08,261 INFO [train.py:842] (2/4) Epoch 2, batch 1650, loss[loss=0.3227, simple_loss=0.3614, pruned_loss=0.142, over 7427.00 frames.], tot_loss[loss=0.3284, simple_loss=0.371, pruned_loss=0.143, over 1423667.95 frames.], batch size: 20, lr: 1.93e-03
2022-05-26 13:10:46,848 INFO [train.py:842] (2/4) Epoch 2, batch 1700, loss[loss=0.3217, simple_loss=0.3684, pruned_loss=0.1375, over 7416.00 frames.], tot_loss[loss=0.3266, simple_loss=0.3702, pruned_loss=0.1415, over 1422450.54 frames.], batch size: 21, lr: 1.92e-03
2022-05-26 13:11:25,779 INFO [train.py:842] (2/4) Epoch 2, batch 1750, loss[loss=0.2833, simple_loss=0.3289, pruned_loss=0.1188, over 7278.00 frames.], tot_loss[loss=0.3264, simple_loss=0.3704, pruned_loss=0.1412, over 1422469.04 frames.], batch size: 18, lr: 1.92e-03
2022-05-26 13:12:04,200 INFO [train.py:842] (2/4) Epoch 2, batch 1800, loss[loss=0.3407, simple_loss=0.3783, pruned_loss=0.1515, over 7349.00 frames.], tot_loss[loss=0.3282, simple_loss=0.3717, pruned_loss=0.1424, over 1424032.29 frames.], batch size: 19, lr: 1.92e-03
2022-05-26 13:12:43,080 INFO [train.py:842] (2/4) Epoch 2, batch 1850, loss[loss=0.2503, simple_loss=0.322, pruned_loss=0.08931, over 7309.00 frames.], tot_loss[loss=0.3235, simple_loss=0.3684, pruned_loss=0.1393, over 1424356.17 frames.], batch size: 20, lr: 1.91e-03
2022-05-26 13:13:21,382 INFO [train.py:842] (2/4) Epoch 2, batch 1900, loss[loss=0.3197, simple_loss=0.3471, pruned_loss=0.1462, over 6992.00 frames.], tot_loss[loss=0.3234, simple_loss=0.3687, pruned_loss=0.1391, over 1428315.37 frames.], batch size: 16, lr: 1.91e-03
2022-05-26 13:14:00,097 INFO [train.py:842] (2/4) Epoch 2, batch 1950, loss[loss=0.3802, simple_loss=0.3939, pruned_loss=0.1833, over 7296.00 frames.], tot_loss[loss=0.3253, simple_loss=0.3703, pruned_loss=0.1401, over 1428509.27 frames.], batch size: 18, lr: 1.91e-03
2022-05-26 13:14:38,211 INFO [train.py:842] (2/4) Epoch 2, batch 2000, loss[loss=0.3445, simple_loss=0.3863, pruned_loss=0.1513, over 7107.00 frames.], tot_loss[loss=0.3287, simple_loss=0.3726, pruned_loss=0.1424, over 1423005.87 frames.], batch size: 21, lr: 1.90e-03
2022-05-26 13:15:17,087 INFO [train.py:842] (2/4) Epoch 2, batch 2050, loss[loss=0.3861, simple_loss=0.4223, pruned_loss=0.175, over 7097.00 frames.], tot_loss[loss=0.3281, simple_loss=0.3718, pruned_loss=0.1422, over 1423932.53 frames.], batch size: 28, lr: 1.90e-03
2022-05-26 13:15:55,559 INFO [train.py:842] (2/4) Epoch 2, batch 2100, loss[loss=0.3476, simple_loss=0.3632, pruned_loss=0.166, over 7410.00 frames.], tot_loss[loss=0.3289, simple_loss=0.3722, pruned_loss=0.1427, over 1424634.48 frames.], batch size: 18, lr: 1.90e-03
2022-05-26 13:16:34,411 INFO [train.py:842] (2/4) Epoch 2, batch 2150, loss[loss=0.3741, simple_loss=0.4126, pruned_loss=0.1678, over 7406.00 frames.], tot_loss[loss=0.3291, simple_loss=0.3723, pruned_loss=0.1429, over 1423971.09 frames.], batch size: 21, lr: 1.89e-03
2022-05-26 13:17:12,972 INFO [train.py:842] (2/4) Epoch 2, batch 2200, loss[loss=0.3614, simple_loss=0.3887, pruned_loss=0.1671, over 7109.00 frames.], tot_loss[loss=0.3252, simple_loss=0.3692, pruned_loss=0.1406, over 1423301.29 frames.], batch size: 21, lr: 1.89e-03
2022-05-26 13:17:52,117 INFO [train.py:842] (2/4) Epoch 2, batch 2250, loss[loss=0.2727, simple_loss=0.348, pruned_loss=0.09873, over 7215.00 frames.], tot_loss[loss=0.3237, simple_loss=0.3679, pruned_loss=0.1398, over 1424822.51 frames.], batch size: 21, lr: 1.89e-03
2022-05-26 13:18:30,733 INFO [train.py:842] (2/4) Epoch 2, batch 2300, loss[loss=0.3343, simple_loss=0.3842, pruned_loss=0.1421, over 7200.00 frames.], tot_loss[loss=0.3227, simple_loss=0.3673, pruned_loss=0.139, over 1424963.61 frames.], batch size: 22, lr: 1.88e-03
2022-05-26 13:19:09,884 INFO [train.py:842] (2/4) Epoch 2, batch 2350, loss[loss=0.2621, simple_loss=0.3379, pruned_loss=0.09316, over 7229.00 frames.], tot_loss[loss=0.3229, simple_loss=0.3678, pruned_loss=0.1391, over 1422108.61 frames.], batch size: 20, lr: 1.88e-03
2022-05-26 13:19:48,354 INFO [train.py:842] (2/4) Epoch 2, batch 2400, loss[loss=0.3528, simple_loss=0.3961, pruned_loss=0.1548, over 7319.00 frames.], tot_loss[loss=0.322, simple_loss=0.3669, pruned_loss=0.1386, over 1421868.25 frames.], batch size: 21, lr: 1.87e-03
2022-05-26 13:20:27,510 INFO [train.py:842] (2/4) Epoch 2, batch 2450, loss[loss=0.3291, simple_loss=0.377, pruned_loss=0.1405, over 7312.00 frames.], tot_loss[loss=0.3239, simple_loss=0.3686, pruned_loss=0.1396, over 1425775.44 frames.], batch size: 21, lr: 1.87e-03
2022-05-26 13:21:06,101 INFO [train.py:842] (2/4) Epoch 2, batch 2500, loss[loss=0.3727, simple_loss=0.4081, pruned_loss=0.1687, over 7141.00 frames.], tot_loss[loss=0.3223, simple_loss=0.3674, pruned_loss=0.1386, over 1426143.21 frames.], batch size: 26, lr: 1.87e-03
2022-05-26 13:21:44,924 INFO [train.py:842] (2/4) Epoch 2, batch 2550, loss[loss=0.2419, simple_loss=0.2902, pruned_loss=0.09681, over 6989.00 frames.], tot_loss[loss=0.3208, simple_loss=0.3664, pruned_loss=0.1376, over 1426357.67 frames.], batch size: 16, lr: 1.86e-03
2022-05-26 13:22:23,545 INFO [train.py:842] (2/4) Epoch 2, batch 2600, loss[loss=0.3656, simple_loss=0.4036, pruned_loss=0.1638, over 7134.00 frames.], tot_loss[loss=0.3213, simple_loss=0.3665, pruned_loss=0.1381, over 1428748.18 frames.], batch size: 26, lr: 1.86e-03
2022-05-26 13:23:02,366 INFO [train.py:842] (2/4) Epoch 2, batch 2650, loss[loss=0.2885, simple_loss=0.3532, pruned_loss=0.1119, over 6666.00 frames.], tot_loss[loss=0.3203, simple_loss=0.3661, pruned_loss=0.1373, over 1427821.12 frames.], batch size: 38, lr: 1.86e-03
2022-05-26 13:23:41,052 INFO [train.py:842] (2/4) Epoch 2, batch 2700, loss[loss=0.3308, simple_loss=0.3745, pruned_loss=0.1435, over 6721.00 frames.], tot_loss[loss=0.3185, simple_loss=0.3646, pruned_loss=0.1361, over 1427350.30 frames.], batch size: 31, lr: 1.85e-03
2022-05-26 13:24:20,362 INFO [train.py:842] (2/4) Epoch 2, batch 2750, loss[loss=0.3449, simple_loss=0.4053, pruned_loss=0.1423, over 7299.00 frames.], tot_loss[loss=0.3194, simple_loss=0.3653, pruned_loss=0.1367, over 1424020.04 frames.], batch size: 24, lr: 1.85e-03
2022-05-26 13:24:58,803 INFO [train.py:842] (2/4) Epoch 2, batch 2800, loss[loss=0.2938, simple_loss=0.3562, pruned_loss=0.1157, over 7211.00 frames.], tot_loss[loss=0.3207, simple_loss=0.3662, pruned_loss=0.1376, over 1427283.47 frames.], batch size: 23, lr: 1.85e-03
2022-05-26 13:25:37,893 INFO [train.py:842] (2/4) Epoch 2, batch 2850, loss[loss=0.2814, simple_loss=0.3464, pruned_loss=0.1083, over 7275.00 frames.], tot_loss[loss=0.3205, simple_loss=0.3662, pruned_loss=0.1374, over 1426634.68 frames.], batch size: 24, lr: 1.84e-03
2022-05-26 13:26:16,447 INFO [train.py:842] (2/4) Epoch 2, batch 2900, loss[loss=0.3442, simple_loss=0.3974, pruned_loss=0.1455, over 7229.00 frames.], tot_loss[loss=0.3233, simple_loss=0.3685, pruned_loss=0.1391, over 1422140.75 frames.], batch size: 20, lr: 1.84e-03
2022-05-26 13:26:55,513 INFO [train.py:842] (2/4) Epoch 2, batch 2950, loss[loss=0.2775, simple_loss=0.3474, pruned_loss=0.1038, over 7230.00 frames.], tot_loss[loss=0.3227, simple_loss=0.368, pruned_loss=0.1388, over 1423672.06 frames.], batch size: 20, lr: 1.84e-03
2022-05-26 13:27:34,165 INFO [train.py:842] (2/4) Epoch 2, batch 3000, loss[loss=0.2938, simple_loss=0.3387, pruned_loss=0.1245, over 7275.00 frames.], tot_loss[loss=0.3193, simple_loss=0.3657, pruned_loss=0.1365, over 1426973.15 frames.], batch size: 17, lr: 1.84e-03
2022-05-26 13:27:34,166 INFO [train.py:862] (2/4) Computing validation loss
2022-05-26 13:27:43,282 INFO [train.py:871] (2/4) Epoch 2, validation: loss=0.238, simple_loss=0.3286, pruned_loss=0.07369, over 868885.00 frames.
2022-05-26 13:28:22,611 INFO [train.py:842] (2/4) Epoch 2, batch 3050, loss[loss=0.2862, simple_loss=0.332, pruned_loss=0.1202, over 7281.00 frames.], tot_loss[loss=0.3197, simple_loss=0.3658, pruned_loss=0.1368, over 1421864.65 frames.], batch size: 18, lr: 1.83e-03
2022-05-26 13:29:00,952 INFO [train.py:842] (2/4) Epoch 2, batch 3100, loss[loss=0.4376, simple_loss=0.4442, pruned_loss=0.2155, over 5245.00 frames.], tot_loss[loss=0.3202, simple_loss=0.3661, pruned_loss=0.1371, over 1422048.19 frames.], batch size: 52, lr: 1.83e-03
2022-05-26 13:29:39,781 INFO [train.py:842] (2/4) Epoch 2, batch 3150, loss[loss=0.2937, simple_loss=0.324, pruned_loss=0.1317, over 6783.00 frames.], tot_loss[loss=0.3182, simple_loss=0.365, pruned_loss=0.1357, over 1424231.86 frames.], batch size: 15, lr: 1.83e-03
2022-05-26 13:30:18,094 INFO [train.py:842] (2/4) Epoch 2, batch 3200, loss[loss=0.351, simple_loss=0.3879, pruned_loss=0.1571, over 5110.00 frames.], tot_loss[loss=0.3203, simple_loss=0.3663, pruned_loss=0.1372, over 1414187.62 frames.], batch size: 52, lr: 1.82e-03
2022-05-26 13:30:56,890 INFO [train.py:842] (2/4) Epoch 2, batch 3250, loss[loss=0.2845, simple_loss=0.3542, pruned_loss=0.1074, over 7189.00 frames.], tot_loss[loss=0.3219, simple_loss=0.3675, pruned_loss=0.1382, over 1416487.06 frames.], batch size: 23, lr: 1.82e-03
2022-05-26 13:31:35,491 INFO [train.py:842] (2/4) Epoch 2, batch 3300, loss[loss=0.3147, simple_loss=0.3599, pruned_loss=0.1347, over 7208.00 frames.], tot_loss[loss=0.3188, simple_loss=0.3654, pruned_loss=0.1361, over 1421203.77 frames.], batch size: 22, lr: 1.82e-03
2022-05-26 13:32:14,252 INFO [train.py:842] (2/4) Epoch 2, batch 3350, loss[loss=0.3578, simple_loss=0.394, pruned_loss=0.1608, over 7211.00 frames.], tot_loss[loss=0.3196, simple_loss=0.3664, pruned_loss=0.1364, over 1423942.00 frames.], batch size: 26, lr: 1.81e-03
2022-05-26 13:32:52,898 INFO [train.py:842] (2/4) Epoch 2, batch 3400, loss[loss=0.2355, simple_loss=0.3019, pruned_loss=0.08448, over 7146.00 frames.], tot_loss[loss=0.3181, simple_loss=0.3654, pruned_loss=0.1354, over 1425532.83 frames.], batch size: 17, lr: 1.81e-03
2022-05-26 13:33:31,547 INFO [train.py:842] (2/4) Epoch 2, batch 3450, loss[loss=0.2995, simple_loss=0.3571, pruned_loss=0.121, over 7299.00 frames.], tot_loss[loss=0.3161, simple_loss=0.3641, pruned_loss=0.1341, over 1427515.14 frames.], batch size: 24, lr: 1.81e-03
2022-05-26 13:34:10,040 INFO [train.py:842] (2/4) Epoch 2, batch 3500, loss[loss=0.305, simple_loss=0.3518, pruned_loss=0.1291, over 6264.00 frames.], tot_loss[loss=0.3167, simple_loss=0.3644, pruned_loss=0.1344, over 1424072.96 frames.], batch size: 37, lr: 1.80e-03
2022-05-26 13:34:48,896 INFO [train.py:842] (2/4) Epoch 2, batch 3550, loss[loss=0.3611, simple_loss=0.4015, pruned_loss=0.1603, over 7292.00 frames.], tot_loss[loss=0.3168, simple_loss=0.3646, pruned_loss=0.1345, over 1424506.85 frames.], batch size: 25, lr: 1.80e-03
2022-05-26 13:35:27,116 INFO [train.py:842] (2/4) Epoch 2, batch 3600, loss[loss=0.3793, simple_loss=0.4171, pruned_loss=0.1708, over 7245.00 frames.], tot_loss[loss=0.3154, simple_loss=0.3643, pruned_loss=0.1332, over 1426266.67 frames.], batch size: 20, lr: 1.80e-03
2022-05-26 13:36:06,091 INFO [train.py:842] (2/4) Epoch 2, batch 3650, loss[loss=0.3287, simple_loss=0.3546, pruned_loss=0.1514, over 6828.00 frames.], tot_loss[loss=0.3135, simple_loss=0.3626, pruned_loss=0.1322, over 1428402.48 frames.], batch size: 15, lr: 1.79e-03
2022-05-26 13:36:44,543 INFO [train.py:842] (2/4) Epoch 2, batch 3700, loss[loss=0.2865, simple_loss=0.3543, pruned_loss=0.1094, over 7159.00 frames.], tot_loss[loss=0.3121, simple_loss=0.3623, pruned_loss=0.131, over 1429659.19 frames.], batch size: 19, lr: 1.79e-03
2022-05-26 13:37:23,446 INFO [train.py:842] (2/4) Epoch 2, batch 3750, loss[loss=0.3333, simple_loss=0.3701, pruned_loss=0.1483, over 7303.00 frames.], tot_loss[loss=0.3155, simple_loss=0.3647, pruned_loss=0.1332, over 1430593.11 frames.], batch size: 24, lr: 1.79e-03
2022-05-26 13:38:02,063 INFO [train.py:842] (2/4) Epoch 2, batch 3800, loss[loss=0.2802, simple_loss=0.3305, pruned_loss=0.1149, over 6988.00 frames.], tot_loss[loss=0.3153, simple_loss=0.3642, pruned_loss=0.1332, over 1431154.57 frames.], batch size: 16, lr: 1.79e-03
2022-05-26 13:38:40,878 INFO [train.py:842] (2/4) Epoch 2, batch 3850, loss[loss=0.2728, simple_loss=0.3489, pruned_loss=0.09833, over 7199.00 frames.], tot_loss[loss=0.316, simple_loss=0.3648, pruned_loss=0.1336, over 1431244.83 frames.], batch size: 22, lr: 1.78e-03
2022-05-26 13:39:19,559 INFO [train.py:842] (2/4) Epoch 2, batch 3900, loss[loss=0.3876, simple_loss=0.4148, pruned_loss=0.1802, over 6605.00 frames.], tot_loss[loss=0.317, simple_loss=0.3653, pruned_loss=0.1344, over 1433181.24 frames.], batch size: 38, lr: 1.78e-03
2022-05-26 13:39:58,481 INFO [train.py:842] (2/4) Epoch 2, batch 3950, loss[loss=0.3753, simple_loss=0.4198, pruned_loss=0.1654, over 7324.00 frames.], tot_loss[loss=0.3156, simple_loss=0.3637, pruned_loss=0.1338, over 1431069.80 frames.], batch size: 21, lr: 1.78e-03
2022-05-26 13:40:36,943 INFO [train.py:842] (2/4) Epoch 2, batch 4000, loss[loss=0.3886, simple_loss=0.4151, pruned_loss=0.181, over 4483.00 frames.], tot_loss[loss=0.3147, simple_loss=0.3632, pruned_loss=0.1331, over 1431323.36 frames.], batch size: 52, lr: 1.77e-03
2022-05-26 13:41:15,589 INFO [train.py:842] (2/4) Epoch 2, batch 4050, loss[loss=0.4028, simple_loss=0.433, pruned_loss=0.1862, over 6689.00 frames.], tot_loss[loss=0.3157, simple_loss=0.3638, pruned_loss=0.1338, over 1426258.26 frames.], batch size: 31, lr: 1.77e-03
2022-05-26 13:41:54,111 INFO [train.py:842] (2/4) Epoch 2, batch 4100, loss[loss=0.3049, simple_loss=0.3612, pruned_loss=0.1243, over 7061.00 frames.], tot_loss[loss=0.3172, simple_loss=0.3646, pruned_loss=0.1348, over 1429102.37 frames.], batch size: 28, lr: 1.77e-03
2022-05-26 13:42:32,939 INFO [train.py:842] (2/4) Epoch 2, batch 4150, loss[loss=0.2797, simple_loss=0.355, pruned_loss=0.1022, over 7188.00 frames.], tot_loss[loss=0.3166, simple_loss=0.3641, pruned_loss=0.1346, over 1426610.38 frames.], batch size: 26, lr: 1.76e-03
2022-05-26 13:43:11,631 INFO [train.py:842] (2/4) Epoch 2, batch 4200, loss[loss=0.2812, simple_loss=0.3285, pruned_loss=0.1169, over 7000.00 frames.], tot_loss[loss=0.3168, simple_loss=0.3643, pruned_loss=0.1346, over 1425715.03 frames.], batch size: 16, lr: 1.76e-03
2022-05-26 13:43:50,287 INFO [train.py:842] (2/4) Epoch 2, batch 4250, loss[loss=0.2961, simple_loss=0.3555, pruned_loss=0.1184, over 7196.00 frames.], tot_loss[loss=0.3153, simple_loss=0.3634, pruned_loss=0.1335, over 1423976.80 frames.], batch size: 22, lr: 1.76e-03
2022-05-26 13:44:28,859 INFO [train.py:842] (2/4) Epoch 2, batch 4300, loss[loss=0.2779, simple_loss=0.3508, pruned_loss=0.1025, over 7338.00 frames.], tot_loss[loss=0.3144, simple_loss=0.3627, pruned_loss=0.1331, over 1425634.27 frames.], batch size: 22, lr: 1.76e-03
2022-05-26 13:45:07,447 INFO [train.py:842] (2/4) Epoch 2, batch 4350, loss[loss=0.3035, simple_loss=0.3497, pruned_loss=0.1286, over 7152.00 frames.], tot_loss[loss=0.3141, simple_loss=0.3627, pruned_loss=0.1327, over 1422192.96 frames.], batch size: 19, lr: 1.75e-03
2022-05-26 13:45:45,797 INFO [train.py:842] (2/4) Epoch 2, batch 4400, loss[loss=0.2686, simple_loss=0.343, pruned_loss=0.09709, over 7284.00 frames.], tot_loss[loss=0.3133, simple_loss=0.3622, pruned_loss=0.1322, over 1423255.17 frames.], batch size: 24, lr: 1.75e-03
2022-05-26 13:46:25,232 INFO [train.py:842] (2/4) Epoch 2, batch 4450, loss[loss=0.2362, simple_loss=0.2938, pruned_loss=0.08927, over 7395.00 frames.], tot_loss[loss=0.3133, simple_loss=0.3622, pruned_loss=0.1323, over 1423558.94 frames.], batch size: 18, lr: 1.75e-03
2022-05-26 13:47:03,778 INFO [train.py:842] (2/4) Epoch 2, batch 4500, loss[loss=0.3236, simple_loss=0.3741, pruned_loss=0.1366, over 7315.00 frames.], tot_loss[loss=0.3155, simple_loss=0.3637, pruned_loss=0.1337, over 1425798.40 frames.], batch size: 20, lr: 1.74e-03
2022-05-26 13:47:42,544 INFO [train.py:842] (2/4) Epoch 2, batch 4550, loss[loss=0.3951, simple_loss=0.4123, pruned_loss=0.1889, over 7276.00 frames.], tot_loss[loss=0.3151, simple_loss=0.3631, pruned_loss=0.1335, over 1426419.07 frames.], batch size: 18, lr: 1.74e-03
2022-05-26 13:48:20,814 INFO [train.py:842] (2/4) Epoch 2, batch 4600, loss[loss=0.3389, simple_loss=0.3828, pruned_loss=0.1475, over 7202.00 frames.], tot_loss[loss=0.3142, simple_loss=0.3624, pruned_loss=0.133, over 1420816.07 frames.], batch size: 22, lr: 1.74e-03
2022-05-26 13:48:59,680 INFO [train.py:842] (2/4) Epoch 2, batch 4650, loss[loss=0.3167, simple_loss=0.3608, pruned_loss=0.1363, over 7297.00 frames.], tot_loss[loss=0.3121, simple_loss=0.3613, pruned_loss=0.1314, over 1424332.80 frames.], batch size: 25, lr: 1.74e-03
2022-05-26 13:49:38,508 INFO [train.py:842] (2/4) Epoch 2, batch 4700, loss[loss=0.4187, simple_loss=0.4406, pruned_loss=0.1984, over 7322.00 frames.], tot_loss[loss=0.3125, simple_loss=0.3616, pruned_loss=0.1317, over 1424232.14 frames.], batch size: 21, lr: 1.73e-03
2022-05-26 13:50:16,914 INFO [train.py:842] (2/4) Epoch 2, batch 4750, loss[loss=0.3274, simple_loss=0.3662, pruned_loss=0.1443, over 7418.00 frames.], tot_loss[loss=0.3143, simple_loss=0.3629, pruned_loss=0.1329, over 1417413.12 frames.], batch size: 21, lr: 1.73e-03
2022-05-26 13:50:55,347 INFO [train.py:842] (2/4) Epoch 2, batch 4800, loss[loss=0.3187, simple_loss=0.3736, pruned_loss=0.1319, over 7303.00 frames.], tot_loss[loss=0.3126, simple_loss=0.3619, pruned_loss=0.1317, over 1415715.40 frames.], batch size: 24, lr: 1.73e-03
2022-05-26 13:51:34,134 INFO [train.py:842] (2/4) Epoch 2, batch 4850, loss[loss=0.2773, simple_loss=0.3333, pruned_loss=0.1106, over 7159.00 frames.], tot_loss[loss=0.3132, simple_loss=0.3624, pruned_loss=0.132, over 1415803.40 frames.], batch size: 18, lr: 1.73e-03
2022-05-26 13:52:12,637 INFO [train.py:842] (2/4) Epoch 2, batch 4900, loss[loss=0.2685, simple_loss=0.3133, pruned_loss=0.1118, over 7265.00 frames.], tot_loss[loss=0.3095, simple_loss=0.3602, pruned_loss=0.1294, over 1418069.27 frames.], batch size: 17, lr: 1.72e-03
2022-05-26 13:52:51,828 INFO [train.py:842] (2/4) Epoch 2, batch 4950, loss[loss=0.3154, simple_loss=0.3654, pruned_loss=0.1326, over 7241.00 frames.], tot_loss[loss=0.3072, simple_loss=0.3582, pruned_loss=0.1281, over 1420298.96 frames.], batch size: 20, lr: 1.72e-03
2022-05-26 13:53:30,406 INFO [train.py:842] (2/4) Epoch 2, batch 5000, loss[loss=0.311, simple_loss=0.3507, pruned_loss=0.1356, over 7273.00 frames.], tot_loss[loss=0.3079, simple_loss=0.3587, pruned_loss=0.1285, over 1422893.24 frames.], batch size: 17, lr: 1.72e-03
2022-05-26 13:54:08,957 INFO [train.py:842] (2/4) Epoch 2, batch 5050, loss[loss=0.3305, simple_loss=0.367, pruned_loss=0.147, over 7413.00 frames.], tot_loss[loss=0.3103, simple_loss=0.3605, pruned_loss=0.13, over 1416402.75 frames.], batch size: 21, lr: 1.71e-03
2022-05-26 13:54:47,653 INFO [train.py:842] (2/4) Epoch 2, batch 5100, loss[loss=0.2932, simple_loss=0.3576, pruned_loss=0.1144, over 7156.00 frames.], tot_loss[loss=0.3091, simple_loss=0.36, pruned_loss=0.1291, over 1419992.62 frames.], batch size: 19, lr: 1.71e-03
2022-05-26 13:55:26,653 INFO [train.py:842] (2/4) Epoch 2, batch 5150, loss[loss=0.3363, simple_loss=0.3906, pruned_loss=0.141, over 7225.00 frames.], tot_loss[loss=0.31, simple_loss=0.3604, pruned_loss=0.1298, over 1421088.66 frames.], batch size: 21, lr: 1.71e-03
2022-05-26 13:56:05,012 INFO [train.py:842] (2/4) Epoch 2, batch 5200, loss[loss=0.3145, simple_loss=0.3748, pruned_loss=0.1271, over 7297.00 frames.], tot_loss[loss=0.309, simple_loss=0.3602, pruned_loss=0.1289, over 1422255.38 frames.], batch size: 25, lr: 1.71e-03
2022-05-26 13:56:43,792 INFO [train.py:842] (2/4) Epoch 2, batch 5250, loss[loss=0.2902, simple_loss=0.3465, pruned_loss=0.117, over 6781.00 frames.], tot_loss[loss=0.3085, simple_loss=0.3597, pruned_loss=0.1286, over 1425003.87 frames.], batch size: 31, lr: 1.70e-03
2022-05-26 13:57:22,560 INFO [train.py:842] (2/4) Epoch 2, batch 5300, loss[loss=0.3597, simple_loss=0.4009, pruned_loss=0.1593, over 7379.00 frames.], tot_loss[loss=0.3092, simple_loss=0.3601, pruned_loss=0.1291, over 1421722.82 frames.], batch size: 23, lr: 1.70e-03
2022-05-26 13:58:01,623 INFO [train.py:842] (2/4) Epoch 2, batch 5350, loss[loss=0.2206, simple_loss=0.2881, pruned_loss=0.07655, over 7365.00 frames.], tot_loss[loss=0.3074, simple_loss=0.3583, pruned_loss=0.1283, over 1419352.01 frames.], batch size: 19, lr: 1.70e-03
2022-05-26 13:58:40,204 INFO [train.py:842] (2/4) Epoch 2, batch 5400, loss[loss=0.3162, simple_loss=0.3617, pruned_loss=0.1354, over 6525.00 frames.], tot_loss[loss=0.3065, simple_loss=0.3575, pruned_loss=0.1278, over 1420373.41 frames.], batch size: 38, lr: 1.70e-03
2022-05-26 13:59:19,542 INFO [train.py:842] (2/4) Epoch 2, batch 5450, loss[loss=0.2678, simple_loss=0.3219, pruned_loss=0.1069, over 6821.00 frames.], tot_loss[loss=0.3055, simple_loss=0.3564, pruned_loss=0.1273, over 1421473.64 frames.], batch size: 15, lr: 1.69e-03
2022-05-26 13:59:58,104 INFO [train.py:842] (2/4) Epoch 2, batch 5500, loss[loss=0.2966, simple_loss=0.3493, pruned_loss=0.1219, over 7134.00 frames.], tot_loss[loss=0.3061, simple_loss=0.3569, pruned_loss=0.1277, over 1423660.42 frames.], batch size: 17, lr: 1.69e-03
2022-05-26 14:00:37,017 INFO [train.py:842] (2/4) Epoch 2, batch 5550, loss[loss=0.2395, simple_loss=0.3103, pruned_loss=0.08434, over 6984.00 frames.], tot_loss[loss=0.3053, simple_loss=0.3561, pruned_loss=0.1273, over 1424205.91 frames.], batch size: 16, lr: 1.69e-03
2022-05-26 14:01:15,380 INFO [train.py:842] (2/4) Epoch 2, batch 5600, loss[loss=0.2842, simple_loss=0.358, pruned_loss=0.1052, over 7309.00 frames.], tot_loss[loss=0.3053, simple_loss=0.3568, pruned_loss=0.1269, over 1424723.58 frames.], batch size: 24, lr: 1.69e-03
2022-05-26 14:01:54,145 INFO [train.py:842] (2/4) Epoch 2, batch 5650, loss[loss=0.3192, simple_loss=0.3753, pruned_loss=0.1315, over 7205.00 frames.], tot_loss[loss=0.3066, simple_loss=0.3581, pruned_loss=0.1276, over 1425579.90 frames.], batch size: 23, lr: 1.68e-03
2022-05-26 14:02:32,781 INFO [train.py:842] (2/4) Epoch 2, batch 5700, loss[loss=0.2344, simple_loss=0.2985, pruned_loss=0.08518, over 7296.00 frames.], tot_loss[loss=0.3062, simple_loss=0.3572, pruned_loss=0.1276, over 1424592.99 frames.], batch size: 18, lr: 1.68e-03
2022-05-26 14:03:11,573 INFO [train.py:842] (2/4) Epoch 2, batch 5750, loss[loss=0.3802, simple_loss=0.417, pruned_loss=0.1717, over 7312.00 frames.], tot_loss[loss=0.306, simple_loss=0.3571, pruned_loss=0.1275, over 1422557.67 frames.], batch size: 21, lr: 1.68e-03
2022-05-26 14:03:50,308 INFO [train.py:842] (2/4) Epoch 2, batch 5800, loss[loss=0.3021, simple_loss=0.3583, pruned_loss=0.123, over 7159.00 frames.], tot_loss[loss=0.304, simple_loss=0.3559, pruned_loss=0.126, over 1426718.11 frames.], batch size: 26, lr: 1.68e-03
2022-05-26 14:04:29,364 INFO [train.py:842] (2/4) Epoch 2, batch 5850, loss[loss=0.3621, simple_loss=0.4051, pruned_loss=0.1596, over 7416.00 frames.], tot_loss[loss=0.3062, simple_loss=0.3579, pruned_loss=0.1273, over 1422592.24 frames.], batch size: 21, lr: 1.67e-03
2022-05-26 14:05:07,952 INFO [train.py:842] (2/4) Epoch 2, batch 5900, loss[loss=0.3462, simple_loss=0.3687, pruned_loss=0.1619, over 7294.00 frames.], tot_loss[loss=0.305, simple_loss=0.3565, pruned_loss=0.1267, over 1425126.25 frames.], batch size: 17, lr: 1.67e-03
2022-05-26 14:05:46,677 INFO [train.py:842] (2/4) Epoch 2, batch 5950, loss[loss=0.3748, simple_loss=0.4237, pruned_loss=0.1629, over 7207.00 frames.], tot_loss[loss=0.3051, simple_loss=0.3568, pruned_loss=0.1267, over 1423968.37 frames.], batch size: 22, lr: 1.67e-03
2022-05-26 14:06:25,158 INFO [train.py:842] (2/4) Epoch 2, batch 6000, loss[loss=0.3377, simple_loss=0.3846, pruned_loss=0.1454, over 7412.00 frames.], tot_loss[loss=0.3071, simple_loss=0.3585, pruned_loss=0.1278, over 1420396.97 frames.], batch size: 21, lr: 1.67e-03
2022-05-26 14:06:25,158 INFO [train.py:862] (2/4) Computing validation loss
2022-05-26 14:06:34,412 INFO [train.py:871] (2/4) Epoch 2, validation: loss=0.2262, simple_loss=0.3196, pruned_loss=0.0664, over 868885.00 frames.
2022-05-26 14:07:13,292 INFO [train.py:842] (2/4) Epoch 2, batch 6050, loss[loss=0.2993, simple_loss=0.357, pruned_loss=0.1208, over 7206.00 frames.], tot_loss[loss=0.3075, simple_loss=0.3586, pruned_loss=0.1282, over 1424709.34 frames.], batch size: 23, lr: 1.66e-03
2022-05-26 14:07:51,787 INFO [train.py:842] (2/4) Epoch 2, batch 6100, loss[loss=0.2997, simple_loss=0.359, pruned_loss=0.1201, over 7369.00 frames.], tot_loss[loss=0.3069, simple_loss=0.3585, pruned_loss=0.1277, over 1426325.20 frames.], batch size: 23, lr: 1.66e-03
2022-05-26 14:08:30,698 INFO [train.py:842] (2/4) Epoch 2, batch 6150, loss[loss=0.3338, simple_loss=0.3868, pruned_loss=0.1404, over 7003.00 frames.], tot_loss[loss=0.3052, simple_loss=0.3571, pruned_loss=0.1267, over 1426082.95 frames.], batch size: 28, lr: 1.66e-03
2022-05-26 14:09:09,176 INFO [train.py:842] (2/4) Epoch 2, batch 6200, loss[loss=0.2646, simple_loss=0.3285, pruned_loss=0.1003, over 6753.00 frames.], tot_loss[loss=0.3064, simple_loss=0.3579, pruned_loss=0.1274, over 1424811.47 frames.], batch size: 31, lr: 1.66e-03
2022-05-26 14:09:47,987 INFO [train.py:842] (2/4) Epoch 2, batch 6250, loss[loss=0.2853, simple_loss=0.3403, pruned_loss=0.1152, over 7106.00 frames.], tot_loss[loss=0.3067, simple_loss=0.3582, pruned_loss=0.1276, over 1427485.41 frames.], batch size: 21, lr: 1.65e-03
2022-05-26 14:10:27,105 INFO [train.py:842] (2/4) Epoch 2, batch 6300, loss[loss=0.3098, simple_loss=0.37, pruned_loss=0.1248, over 7173.00 frames.], tot_loss[loss=0.3041, simple_loss=0.3564, pruned_loss=0.1259, over 1431298.10 frames.], batch size: 26, lr: 1.65e-03
2022-05-26 14:11:05,661 INFO [train.py:842] (2/4) Epoch 2, batch 6350, loss[loss=0.3061, simple_loss=0.3479, pruned_loss=0.1322, over 6294.00 frames.], tot_loss[loss=0.3051, simple_loss=0.3575, pruned_loss=0.1263, over 1430170.82 frames.], batch size: 37, lr: 1.65e-03
2022-05-26 14:11:44,201 INFO [train.py:842] (2/4) Epoch 2, batch 6400, loss[loss=0.3377, simple_loss=0.3827, pruned_loss=0.1463, over 6795.00 frames.], tot_loss[loss=0.3041, simple_loss=0.3563, pruned_loss=0.1259, over 1424750.03 frames.], batch size: 31, lr: 1.65e-03
2022-05-26 14:12:23,048 INFO [train.py:842] (2/4) Epoch 2, batch 6450, loss[loss=0.2565, simple_loss=0.3141, pruned_loss=0.09945, over 7408.00 frames.], tot_loss[loss=0.3021, simple_loss=0.3551, pruned_loss=0.1246, over 1424349.42 frames.], batch size: 18, lr: 1.64e-03
2022-05-26 14:13:01,662 INFO [train.py:842] (2/4) Epoch 2, batch 6500, loss[loss=0.2858, simple_loss=0.343, pruned_loss=0.1143, over 7195.00 frames.], tot_loss[loss=0.3034, simple_loss=0.3558, pruned_loss=0.1255, over 1423286.17 frames.], batch size: 22, lr: 1.64e-03
2022-05-26 14:13:40,430 INFO [train.py:842] (2/4) Epoch 2, batch 6550, loss[loss=0.2637, simple_loss=0.3149, pruned_loss=0.1062, over 7072.00 frames.], tot_loss[loss=0.3042, simple_loss=0.3567, pruned_loss=0.1259, over 1420096.36 frames.], batch size: 18, lr: 1.64e-03
2022-05-26 14:14:18,980 INFO [train.py:842] (2/4) Epoch 2, batch 6600, loss[loss=0.2712, simple_loss=0.3221, pruned_loss=0.1102, over 7298.00 frames.], tot_loss[loss=0.306, simple_loss=0.3577, pruned_loss=0.1272, over 1420307.27 frames.], batch size: 18, lr: 1.64e-03
2022-05-26 14:14:57,584 INFO [train.py:842] (2/4) Epoch 2, batch 6650, loss[loss=0.2964, simple_loss=0.362, pruned_loss=0.1154, over 7193.00 frames.], tot_loss[loss=0.3066, simple_loss=0.3581, pruned_loss=0.1275, over 1413181.74 frames.], batch size: 23, lr: 1.63e-03
2022-05-26 14:15:36,120 INFO [train.py:842] (2/4) Epoch 2, batch 6700, loss[loss=0.2652, simple_loss=0.3246, pruned_loss=0.1029, over 7274.00 frames.], tot_loss[loss=0.3033, simple_loss=0.3557, pruned_loss=0.1254, over 1419667.22 frames.], batch size: 17, lr: 1.63e-03
2022-05-26 14:16:14,706 INFO [train.py:842] (2/4) Epoch 2, batch 6750, loss[loss=0.3273, simple_loss=0.3778, pruned_loss=0.1384, over 7222.00 frames.], tot_loss[loss=0.3032, simple_loss=0.3563, pruned_loss=0.125, over 1422429.12 frames.], batch size: 20, lr: 1.63e-03
2022-05-26 14:16:53,059 INFO [train.py:842] (2/4) Epoch 2, batch 6800, loss[loss=0.2985, simple_loss=0.3607, pruned_loss=0.1182, over 7130.00 frames.], tot_loss[loss=0.3007, simple_loss=0.3548, pruned_loss=0.1233, over 1424640.23 frames.], batch size: 21, lr: 1.63e-03
2022-05-26 14:17:34,587 INFO [train.py:842] (2/4) Epoch 2, batch 6850, loss[loss=0.3184, simple_loss=0.3628, pruned_loss=0.137, over 7329.00 frames.], tot_loss[loss=0.3007, simple_loss=0.355, pruned_loss=0.1232, over 1421308.87 frames.], batch size: 20, lr: 1.63e-03
2022-05-26 14:18:13,245 INFO [train.py:842] (2/4) Epoch 2, batch 6900, loss[loss=0.3167, simple_loss=0.3641, pruned_loss=0.1347, over 7438.00 frames.], tot_loss[loss=0.3003, simple_loss=0.3549, pruned_loss=0.1229, over 1421414.44 frames.], batch size: 20, lr: 1.62e-03
2022-05-26 14:18:52,139 INFO [train.py:842] (2/4) Epoch 2, batch 6950, loss[loss=0.2225, simple_loss=0.2915, pruned_loss=0.07671, over 7284.00 frames.], tot_loss[loss=0.2987, simple_loss=0.3527, pruned_loss=0.1223, over 1421262.56 frames.], batch size: 18, lr: 1.62e-03
2022-05-26 14:19:30,566 INFO [train.py:842] (2/4) Epoch 2, batch 7000, loss[loss=0.2883, simple_loss=0.3527, pruned_loss=0.1119, over 7316.00 frames.], tot_loss[loss=0.2996, simple_loss=0.353, pruned_loss=0.1231, over 1423409.55 frames.], batch size: 21, lr: 1.62e-03
2022-05-26 14:20:09,754 INFO [train.py:842] (2/4) Epoch 2, batch 7050, loss[loss=0.4874, simple_loss=0.47, pruned_loss=0.2524, over 5305.00 frames.], tot_loss[loss=0.2988, simple_loss=0.3524, pruned_loss=0.1226, over 1425588.80 frames.], batch size: 53, lr: 1.62e-03
2022-05-26 14:20:48,374 INFO [train.py:842] (2/4) Epoch 2, batch 7100, loss[loss=0.284, simple_loss=0.3547, pruned_loss=0.1066, over 7102.00 frames.], tot_loss[loss=0.3006, simple_loss=0.354, pruned_loss=0.1237, over 1425292.31 frames.], batch size: 21, lr: 1.61e-03
2022-05-26 14:21:26,952 INFO [train.py:842] (2/4) Epoch 2, batch 7150, loss[loss=0.2648, simple_loss=0.333, pruned_loss=0.09831, over 7416.00 frames.], tot_loss[loss=0.3013, simple_loss=0.3547, pruned_loss=0.124, over 1422247.85 frames.], batch size: 21, lr: 1.61e-03
2022-05-26 14:22:05,293 INFO [train.py:842] (2/4) Epoch 2, batch 7200, loss[loss=0.2395, simple_loss=0.2984, pruned_loss=0.09032, over 6984.00 frames.], tot_loss[loss=0.3024, simple_loss=0.3554, pruned_loss=0.1247, over 1420616.02 frames.], batch size: 16, lr: 1.61e-03
2022-05-26 14:22:44,437 INFO [train.py:842] (2/4) Epoch 2, batch 7250, loss[loss=0.3135, simple_loss=0.3574, pruned_loss=0.1348, over 7227.00 frames.], tot_loss[loss=0.3024, simple_loss=0.3554, pruned_loss=0.1247, over 1425739.97 frames.], batch size: 20, lr: 1.61e-03
2022-05-26 14:23:22,967 INFO [train.py:842] (2/4) Epoch 2, batch 7300, loss[loss=0.389, simple_loss=0.4142, pruned_loss=0.1819, over 7222.00 frames.], tot_loss[loss=0.3045, simple_loss=0.3573, pruned_loss=0.1258, over 1427990.37 frames.], batch size: 21, lr: 1.60e-03
2022-05-26 14:24:01,873 INFO [train.py:842] (2/4) Epoch 2, batch 7350, loss[loss=0.4012, simple_loss=0.42, pruned_loss=0.1911, over 5367.00 frames.], tot_loss[loss=0.3037, simple_loss=0.3561, pruned_loss=0.1256, over 1424508.21 frames.], batch size: 52, lr: 1.60e-03
2022-05-26 14:24:40,513 INFO [train.py:842] (2/4) Epoch 2, batch 7400, loss[loss=0.3001, simple_loss=0.3455, pruned_loss=0.1273, over 7015.00 frames.], tot_loss[loss=0.303, simple_loss=0.3555, pruned_loss=0.1252, over 1424109.13 frames.], batch size: 16, lr: 1.60e-03
2022-05-26 14:25:19,330 INFO [train.py:842] (2/4) Epoch 2, batch 7450, loss[loss=0.2359, simple_loss=0.3126, pruned_loss=0.07958, over 7364.00 frames.], tot_loss[loss=0.3025, simple_loss=0.3549, pruned_loss=0.1251, over 1419080.47 frames.], batch size: 19, lr: 1.60e-03
2022-05-26 14:25:57,996 INFO [train.py:842] (2/4) Epoch 2, batch 7500, loss[loss=0.2845, simple_loss=0.3646, pruned_loss=0.1022, over 7219.00 frames.], tot_loss[loss=0.3013, simple_loss=0.3544, pruned_loss=0.1241, over 1419567.37 frames.], batch size: 21, lr: 1.60e-03
2022-05-26 14:26:36,917 INFO [train.py:842] (2/4) Epoch 2, batch 7550, loss[loss=0.338, simple_loss=0.3941, pruned_loss=0.141, over 7405.00 frames.], tot_loss[loss=0.3016, simple_loss=0.3548, pruned_loss=0.1242, over 1421156.60 frames.], batch size: 21, lr: 1.59e-03
2022-05-26 14:27:15,662 INFO [train.py:842] (2/4) Epoch 2, batch 7600, loss[loss=0.3568, simple_loss=0.3851, pruned_loss=0.1642, over 4913.00 frames.], tot_loss[loss=0.2999, simple_loss=0.3531, pruned_loss=0.1233, over 1420924.38 frames.], batch size: 52, lr: 1.59e-03
2022-05-26 14:27:54,288 INFO [train.py:842] (2/4) Epoch 2, batch 7650, loss[loss=0.3263, simple_loss=0.369, pruned_loss=0.1418, over 7409.00 frames.], tot_loss[loss=0.2982, simple_loss=0.352, pruned_loss=0.1222, over 1421842.91 frames.], batch size: 21, lr: 1.59e-03
2022-05-26 14:28:32,786 INFO [train.py:842] (2/4) Epoch 2, batch 7700, loss[loss=0.3115, simple_loss=0.3714, pruned_loss=0.1258, over 7339.00 frames.], tot_loss[loss=0.2981, simple_loss=0.3518, pruned_loss=0.1223, over 1423144.39 frames.], batch size: 22, lr: 1.59e-03
2022-05-26 14:29:11,476 INFO [train.py:842] (2/4) Epoch 2, batch 7750, loss[loss=0.3233, simple_loss=0.3803, pruned_loss=0.1332, over 7039.00 frames.], tot_loss[loss=0.2978, simple_loss=0.352, pruned_loss=0.1218, over 1424122.10 frames.], batch size: 28, lr: 1.59e-03
2022-05-26 14:29:50,000 INFO [train.py:842] (2/4) Epoch 2, batch 7800, loss[loss=0.3993, simple_loss=0.4155, pruned_loss=0.1915, over 7139.00 frames.], tot_loss[loss=0.2993, simple_loss=0.3531, pruned_loss=0.1227, over 1423708.02 frames.], batch size: 20, lr: 1.58e-03
2022-05-26 14:30:28,805 INFO [train.py:842] (2/4) Epoch 2, batch 7850, loss[loss=0.2838, simple_loss=0.353, pruned_loss=0.1072, over 7316.00 frames.], tot_loss[loss=0.298, simple_loss=0.3523, pruned_loss=0.1219, over 1423636.68 frames.], batch size: 21, lr: 1.58e-03
2022-05-26 14:31:07,198 INFO [train.py:842] (2/4) Epoch 2, batch 7900, loss[loss=0.3853, simple_loss=0.4105, pruned_loss=0.1801, over 5012.00 frames.], tot_loss[loss=0.2978, simple_loss=0.3522, pruned_loss=0.1217, over 1425539.29 frames.], batch size: 52, lr: 1.58e-03
2022-05-26 14:31:46,043 INFO [train.py:842] (2/4) Epoch 2, batch 7950, loss[loss=0.2528, simple_loss=0.3146, pruned_loss=0.09549, over 7164.00 frames.], tot_loss[loss=0.2978, simple_loss=0.3522, pruned_loss=0.1218, over 1427748.92 frames.], batch size: 18, lr: 1.58e-03
2022-05-26 14:32:24,256 INFO [train.py:842] (2/4) Epoch 2, batch 8000, loss[loss=0.2966, simple_loss=0.3629, pruned_loss=0.1151, over 7232.00 frames.], tot_loss[loss=0.2984, simple_loss=0.3529, pruned_loss=0.122, over 1426965.04 frames.], batch size: 21, lr: 1.57e-03
2022-05-26 14:33:02,889 INFO [train.py:842] (2/4) Epoch 2, batch 8050, loss[loss=0.3715, simple_loss=0.4142, pruned_loss=0.1644, over 6388.00 frames.], tot_loss[loss=0.3005, simple_loss=0.3543, pruned_loss=0.1234, over 1424652.37 frames.], batch size: 37, lr: 1.57e-03
2022-05-26 14:33:41,415 INFO [train.py:842] (2/4) Epoch 2, batch 8100, loss[loss=0.2952, simple_loss=0.3416, pruned_loss=0.1244, over 7163.00 frames.], tot_loss[loss=0.2998, simple_loss=0.3536, pruned_loss=0.123, over 1427027.64 frames.], batch size: 26, lr: 1.57e-03
2022-05-26 14:34:20,547 INFO [train.py:842] (2/4) Epoch 2, batch 8150, loss[loss=0.3494, simple_loss=0.3838, pruned_loss=0.1575, over 7063.00 frames.], tot_loss[loss=0.3003, simple_loss=0.3535, pruned_loss=0.1235, over 1428197.20 frames.], batch size: 18, lr: 1.57e-03
2022-05-26 14:34:58,967 INFO [train.py:842] (2/4) Epoch 2, batch 8200, loss[loss=0.2706, simple_loss=0.3265, pruned_loss=0.1074, over 7289.00 frames.], tot_loss[loss=0.3003, simple_loss=0.3537, pruned_loss=0.1235, over 1423434.32 frames.], batch size: 18, lr: 1.57e-03
2022-05-26 14:35:38,140 INFO [train.py:842] (2/4) Epoch 2, batch 8250, loss[loss=0.2865, simple_loss=0.3358, pruned_loss=0.1186, over 7058.00 frames.], tot_loss[loss=0.2974, simple_loss=0.3512, pruned_loss=0.1218, over 1420623.98 frames.], batch size: 28, lr: 1.56e-03
2022-05-26 14:36:16,475 INFO [train.py:842] (2/4) Epoch 2, batch 8300, loss[loss=0.3144, simple_loss=0.3732, pruned_loss=0.1278, over 7145.00 frames.], tot_loss[loss=0.298, simple_loss=0.3522, pruned_loss=0.1219, over 1418915.58 frames.], batch size: 20, lr: 1.56e-03
2022-05-26 14:36:55,265 INFO [train.py:842] (2/4) Epoch 2, batch 8350, loss[loss=0.4046, simple_loss=0.4279, pruned_loss=0.1906, over 5062.00 frames.], tot_loss[loss=0.2973, simple_loss=0.3518, pruned_loss=0.1214, over 1417418.48 frames.], batch size: 53, lr: 1.56e-03
2022-05-26 14:37:33,581 INFO [train.py:842] (2/4) Epoch 2, batch 8400, loss[loss=0.2423, simple_loss=0.305, pruned_loss=0.08985, over 7117.00 frames.], tot_loss[loss=0.2981, simple_loss=0.3526, pruned_loss=0.1217, over 1418021.72 frames.], batch size: 17, lr: 1.56e-03
2022-05-26 14:38:12,075 INFO [train.py:842] (2/4) Epoch 2, batch 8450, loss[loss=0.2827, simple_loss=0.353, pruned_loss=0.1062, over 7189.00 frames.], tot_loss[loss=0.2976, simple_loss=0.3528, pruned_loss=0.1212, over 1413648.58 frames.], batch size: 22, lr: 1.56e-03
2022-05-26 14:38:50,512 INFO [train.py:842] (2/4) Epoch 2, batch 8500, loss[loss=0.2997, simple_loss=0.3514, pruned_loss=0.124, over 7125.00 frames.], tot_loss[loss=0.2997, simple_loss=0.3542, pruned_loss=0.1226, over 1417615.95 frames.], batch size: 17, lr: 1.55e-03
2022-05-26 14:39:29,185 INFO [train.py:842] (2/4) Epoch 2, batch 8550, loss[loss=0.2414, simple_loss=0.3173, pruned_loss=0.08273, over 7354.00 frames.], tot_loss[loss=0.2991, simple_loss=0.3543, pruned_loss=0.1219, over 1423287.35 frames.], batch size: 19, lr: 1.55e-03
2022-05-26 14:40:07,844 INFO [train.py:842] (2/4) Epoch 2, batch 8600, loss[loss=0.3135, simple_loss=0.3655, pruned_loss=0.1307, over 6384.00 frames.], tot_loss[loss=0.2974, simple_loss=0.3524, pruned_loss=0.1212, over 1420856.84 frames.], batch size: 38, lr: 1.55e-03
2022-05-26 14:40:46,959 INFO [train.py:842] (2/4) Epoch 2, batch 8650, loss[loss=0.329, simple_loss=0.3752, pruned_loss=0.1414, over 7145.00 frames.], tot_loss[loss=0.2963, simple_loss=0.3515, pruned_loss=0.1206, over 1422843.69 frames.], batch size: 20, lr: 1.55e-03
2022-05-26 14:41:25,736 INFO [train.py:842] (2/4) Epoch 2, batch 8700, loss[loss=0.2403, simple_loss=0.3073, pruned_loss=0.0867, over 7069.00 frames.], tot_loss[loss=0.2942, simple_loss=0.3496, pruned_loss=0.1194, over 1421339.00 frames.], batch size: 18, lr: 1.55e-03
2022-05-26 14:42:04,176 INFO [train.py:842] (2/4) Epoch 2, batch 8750, loss[loss=0.23, simple_loss=0.2969, pruned_loss=0.08156, over 7156.00 frames.], tot_loss[loss=0.2941, simple_loss=0.3495, pruned_loss=0.1193, over 1420259.03 frames.], batch size: 18, lr: 1.54e-03
2022-05-26 14:42:42,568 INFO [train.py:842] (2/4) Epoch 2, batch 8800, loss[loss=0.3067, simple_loss=0.3682, pruned_loss=0.1226, over 7331.00 frames.], tot_loss[loss=0.2959, simple_loss=0.3504, pruned_loss=0.1207, over 1412729.38 frames.], batch size: 22, lr: 1.54e-03
2022-05-26 14:43:21,145 INFO [train.py:842] (2/4) Epoch 2, batch 8850, loss[loss=0.3794, simple_loss=0.4241, pruned_loss=0.1673, over 7296.00 frames.], tot_loss[loss=0.2975, simple_loss=0.3515, pruned_loss=0.1217, over 1410443.92 frames.], batch size: 24, lr: 1.54e-03
2022-05-26 14:43:59,277 INFO [train.py:842] (2/4) Epoch 2, batch 8900, loss[loss=0.2974, simple_loss=0.3592, pruned_loss=0.1178, over 6772.00 frames.], tot_loss[loss=0.2974, simple_loss=0.3515, pruned_loss=0.1216, over 1400972.25 frames.], batch size: 31, lr: 1.54e-03
2022-05-26 14:44:37,751 INFO [train.py:842] (2/4) Epoch 2, batch 8950, loss[loss=0.2734, simple_loss=0.3427, pruned_loss=0.1021, over 7106.00 frames.], tot_loss[loss=0.2985, simple_loss=0.3528, pruned_loss=0.1221, over 1400664.00 frames.], batch size: 21, lr: 1.54e-03
2022-05-26 14:45:16,055 INFO [train.py:842] (2/4) Epoch 2, batch 9000, loss[loss=0.377, simple_loss=0.4057, pruned_loss=0.1741, over 7275.00 frames.], tot_loss[loss=0.3, simple_loss=0.3539, pruned_loss=0.1231, over 1396835.82 frames.], batch size: 18, lr: 1.53e-03
2022-05-26 14:45:16,055 INFO [train.py:862] (2/4) Computing validation loss
2022-05-26 14:45:25,235 INFO [train.py:871] (2/4) Epoch 2, validation: loss=0.2179, simple_loss=0.3144, pruned_loss=0.06069, over 868885.00 frames.
2022-05-26 14:46:03,593 INFO [train.py:842] (2/4) Epoch 2, batch 9050, loss[loss=0.246, simple_loss=0.3137, pruned_loss=0.08921, over 7266.00 frames.], tot_loss[loss=0.3018, simple_loss=0.3551, pruned_loss=0.1242, over 1381754.41 frames.], batch size: 18, lr: 1.53e-03
2022-05-26 14:46:40,966 INFO [train.py:842] (2/4) Epoch 2, batch 9100, loss[loss=0.3191, simple_loss=0.3553, pruned_loss=0.1415, over 4915.00 frames.], tot_loss[loss=0.307, simple_loss=0.3587, pruned_loss=0.1277, over 1327044.20 frames.], batch size: 53, lr: 1.53e-03
2022-05-26 14:47:18,817 INFO [train.py:842] (2/4) Epoch 2, batch 9150, loss[loss=0.3048, simple_loss=0.3533, pruned_loss=0.1281, over 4816.00 frames.], tot_loss[loss=0.3144, simple_loss=0.3636, pruned_loss=0.1327, over 1257783.86 frames.], batch size: 52, lr: 1.53e-03
|