piotr25691 commited on
Commit
02d731b
1 Parent(s): 0ab895c

wrote the readme

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: chuanli11/Llama-3.2-3B-Instruct-uncensored
3
+ datasets:
4
+ - KingNish/reasoning-base-20k
5
+ language:
6
+ - en
7
+ license: llama3.2
8
+ tags:
9
+ - text-generation-inference
10
+ - transformers
11
+ - llama
12
+ - trl
13
+ - sft
14
+ - reasoning
15
+ - llama-3
16
+ ---
17
+
18
+ # Model Description
19
+
20
+ A work in progress uncensored reasoning Llama 3.2 3B model trained on reasoning data.
21
+
22
+ Since I used different training code, it is unknown whether it generates the same kind of reasoning.
23
+ Here is what inference code you should use:
24
+ ```py
25
+ from transformers import AutoModelForCausalLM, AutoTokenizer
26
+
27
+ MAX_REASONING_TOKENS = 1024
28
+ MAX_RESPONSE_TOKENS = 512
29
+
30
+ model_name = "piotr25691/thea-3b-25r"
31
+
32
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
33
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
34
+
35
+ prompt = "Which is greater 9.9 or 9.11 ??"
36
+ messages = [
37
+ {"role": "user", "content": prompt}
38
+ ]
39
+
40
+ # Generate reasoning
41
+ reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
42
+ reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
43
+ reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
44
+ reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
45
+
46
+ # print("REASONING: " + reasoning_output)
47
+
48
+ # Generate answer
49
+ messages.append({"role": "reasoning", "content": reasoning_output})
50
+ response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
51
+ response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
52
+ response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
53
+ response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
54
+
55
+ print("ANSWER: " + response_output)
56
+ ```
57
+
58
+ - **Trained by:** [Piotr Zalewski](https://huggingface.co/piotr25691)
59
+ - **License:** llama3.2
60
+ - **Finetuned from model:** [chuanli11/Llama-3.2-3B-Instruct-uncensored](https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored)
61
+ - **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k)
62
+
63
+ This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4?scriptVersionId=200492023).
64
+
65
+ Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4?scriptVersionId=200492023 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs.