File size: 10,866 Bytes
ce346a3 e5afabb ce346a3 e5afabb ce346a3 e5afabb ce346a3 ee3c0fb 0288bc0 ce346a3 d081b0e ce346a3 58047e2 ce346a3 ee3c0fb ce346a3 e5bd1cd ce346a3 e5bd1cd ce346a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
---
language:
- pt
tags:
- generated_from_trainer
datasets:
- lener_br
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: checkpoints
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lener_br
type: lener_br
metrics:
- name: F1
type: f1
value: 0.9082022949426265
- name: Precision
type: precision
value: 0.8975220495590088
- name: Recall
type: recall
value: 0.9191397849462366
- name: Accuracy
type: accuracy
value: 0.9808310603867311
- name: Loss
type: loss
value: 0.1228889599442482
- task:
type: token-classification
name: Token Classification
dataset:
name: lener_br
type: lener_br
config: lener_br
split: validation
metrics:
- name: Accuracy
type: accuracy
value: 0.9808615356484374
verified: true
- name: Precision
type: precision
value: 0.9853426225094238
verified: true
- name: Recall
type: recall
value: 0.9864880801954342
verified: true
- name: F1
type: f1
value: 0.9859150186480775
verified: true
- name: loss
type: loss
value: 0.11563518643379211
verified: true
widget:
- text: "Ao Instituto M\xE9dico Legal da jurisdi\xE7\xE3o do acidente ou da resid\xEA\
ncia cumpre fornecer, no prazo de 90 dias, laudo \xE0 v\xEDtima (art. 5, \xA7\
\ 5, Lei n. 6.194/74 de 19 de dezembro de 1974), fun\xE7\xE3o t\xE9cnica que\
\ pode ser suprida por prova pericial realizada por ordem do ju\xEDzo da causa,\
\ ou por prova t\xE9cnica realizada no \xE2mbito administrativo que se mostre\
\ coerente com os demais elementos de prova constante dos autos."
- text: "Acrescento que n\xE3o h\xE1 de se falar em viola\xE7\xE3o do artigo 114,\
\ \xA7 3\xBA, da Constitui\xE7\xE3o Federal, posto que referido dispositivo revela-se\
\ impertinente, tratando da possibilidade de ajuizamento de diss\xEDdio coletivo\
\ pelo Minist\xE9rio P\xFAblico do Trabalho nos casos de greve em atividade essencial."
- text: "Todavia, entendo que extrair da aludida norma o sentido expresso na reda\xE7\
\xE3o acima implica desconstruir o significado do texto constitucional, o que\
\ \xE9 absolutamente vedado ao int\xE9rprete. Nesse sentido, cito Dimitri Dimoulis:\
\ \u2018(...) ao int\xE9rprete n\xE3o \xE9 dado escolher significados que n\xE3\
o estejam abarcados pela moldura da norma. Interpretar n\xE3o pode significar\
\ violentar a norma.\u2019 (Positivismo Jur\xEDdico. S\xE3o Paulo: M\xE9todo,\
\ 2006, p. 220).59. Dessa forma, deve-se tomar o sentido etimol\xF3gico como limite\
\ da atividade interpretativa, a qual n\xE3o pode superado, a ponto de destruir\
\ a pr\xF3pria norma a ser interpretada. Ou, como diz Konrad Hesse, \u2018o texto\
\ da norma \xE9 o limite insuper\xE1vel da atividade interpretativa.\u2019 (Elementos\
\ de Direito Constitucional da Rep\xFAblica Federal da Alemanha, Porto Alegre:\
\ Sergio Antonio Fabris, 2003, p. 71)."
---
## (BERT large) NER model in the legal domain in Portuguese (LeNER-Br)
**ner-bert-large-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective.
Due to the small size of the finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*):
- **f1**: 0.9082022949426265
- **precision**: 0.8975220495590088
- **recall**: 0.9191397849462366
- **accuracy**: 0.9808310603867311
- **loss**: 0.1228889599442482
Check as well the [base version of this model](https://huggingface.co/pierreguillou/ner-bert-base-cased-pt-lenerbr) with a f1 of 0.893.
**Note**: the model [pierreguillou/bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr) is a language model that was created through the finetuning of the model [BERTimbau large](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. This first specialization of the language model before finetuning on the NER task allows to get a better NER model.
## Blog post
[NLP | Modelos e Web App para Reconhecimento de Entidade Nomeada (NER) no domínio jurídico brasileiro](https://medium.com/@pierre_guillou/nlp-modelos-e-web-app-para-reconhecimento-de-entidade-nomeada-ner-no-dom%C3%ADnio-jur%C3%ADdico-b658db55edfb) (29/12/2021)
## Widget & App
You can test this model into the widget of this page.
Use as well the [NER App](https://huggingface.co/spaces/pierreguillou/ner-bert-pt-lenerbr) that allows comparing the 2 BERT models (base and large) fitted in the NER task with the legal LeNER-Br dataset.
## Using the model for inference in production
````
# install pytorch: check https://pytorch.org/
# !pip install transformers
from transformers import AutoModelForTokenClassification, AutoTokenizer
import torch
# parameters
model_name = "pierreguillou/ner-bert-large-cased-pt-lenerbr"
model = AutoModelForTokenClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial."
# tokenization
inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt")
tokens = inputs.tokens()
# get predictions
outputs = model(**inputs).logits
predictions = torch.argmax(outputs, dim=2)
# print predictions
for token, prediction in zip(tokens, predictions[0].numpy()):
print((token, model.config.id2label[prediction]))
````
You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence.
````
!pip install transformers
import transformers
from transformers import pipeline
model_name = "pierreguillou/ner-bert-large-cased-pt-lenerbr"
ner = pipeline(
"ner",
model=model_name
)
ner(input_text)
````
## Training procedure
### Notebook
The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb)) is in github.
### Hyperparameters
# batch, learning rate...
- per_device_batch_size = 2
- gradient_accumulation_steps = 2
- learning_rate = 2e-5
- num_train_epochs = 10
- weight_decay = 0.01
- optimizer = AdamW
- betas = (0.9,0.999)
- epsilon = 1e-08
- lr_scheduler_type = linear
- seed = 42
# save model & load best model
- save_total_limit = 7
- logging_steps = 500
- eval_steps = logging_steps
- evaluation_strategy = 'steps'
- logging_strategy = 'steps'
- save_strategy = 'steps'
- save_steps = logging_steps
- load_best_model_at_end = True
- fp16 = True
# get best model through a metric
- metric_for_best_model = 'eval_f1'
- greater_is_better = True
### Training results
````
Num examples = 7828
Num Epochs = 20
Instantaneous batch size per device = 2
Total train batch size (w. parallel, distributed & accumulation) = 4
Gradient Accumulation steps = 2
Total optimization steps = 39140
Step Training Loss Validation Loss Precision Recall F1 Accuracy
500 0.250000 0.140582 0.760833 0.770323 0.765548 0.963125
1000 0.076200 0.117882 0.829082 0.817849 0.823428 0.966569
1500 0.082400 0.150047 0.679610 0.914624 0.779795 0.957213
2000 0.047500 0.133443 0.817678 0.857419 0.837077 0.969190
2500 0.034200 0.230139 0.895672 0.845591 0.869912 0.964070
3000 0.033800 0.108022 0.859225 0.887312 0.873043 0.973700
3500 0.030100 0.113467 0.855747 0.885376 0.870310 0.975879
4000 0.029900 0.118619 0.850207 0.884946 0.867229 0.974477
4500 0.022500 0.124327 0.841048 0.890968 0.865288 0.975041
5000 0.020200 0.129294 0.801538 0.918925 0.856227 0.968077
5500 0.019700 0.128344 0.814222 0.908602 0.858827 0.969250
6000 0.024600 0.182563 0.908087 0.866882 0.887006 0.968565
6500 0.012600 0.159217 0.829883 0.913763 0.869806 0.969357
7000 0.020600 0.183726 0.854557 0.893333 0.873515 0.966447
7500 0.014400 0.141395 0.777716 0.905161 0.836613 0.966828
8000 0.013400 0.139378 0.873042 0.899140 0.885899 0.975772
8500 0.014700 0.142521 0.864152 0.901505 0.882433 0.976366
9000 0.010900 0.122889 0.897522 0.919140 0.908202 0.980831
9500 0.013500 0.143407 0.816580 0.906667 0.859268 0.973395
10000 0.010400 0.144946 0.835608 0.908387 0.870479 0.974629
10500 0.007800 0.143086 0.847587 0.910108 0.877735 0.975985
11000 0.008200 0.156379 0.873778 0.884301 0.879008 0.976321
11500 0.008200 0.133356 0.901193 0.910108 0.905628 0.980328
12000 0.006900 0.133476 0.892202 0.920215 0.905992 0.980572
12500 0.006900 0.129991 0.890159 0.904516 0.897280 0.978683
````
### Validation metrics by Named Entity
````
{'JURISPRUDENCIA': {'f1': 0.8135593220338984,
'number': 657,
'precision': 0.865979381443299,
'recall': 0.7671232876712328},
'LEGISLACAO': {'f1': 0.8888888888888888,
'number': 571,
'precision': 0.8952042628774423,
'recall': 0.882661996497373},
'LOCAL': {'f1': 0.850467289719626,
'number': 194,
'precision': 0.7777777777777778,
'recall': 0.9381443298969072},
'ORGANIZACAO': {'f1': 0.8740635033892258,
'number': 1340,
'precision': 0.8373205741626795,
'recall': 0.914179104477612},
'PESSOA': {'f1': 0.9836677554829678,
'number': 1072,
'precision': 0.9841269841269841,
'recall': 0.9832089552238806},
'TEMPO': {'f1': 0.9669669669669669,
'number': 816,
'precision': 0.9481743227326266,
'recall': 0.9865196078431373},
'overall_accuracy': 0.9808310603867311,
'overall_f1': 0.9082022949426265,
'overall_precision': 0.8975220495590088,
'overall_recall': 0.9191397849462366}
```` |