File size: 3,731 Bytes
4366c37
 
 
 
 
 
 
 
 
 
 
1968504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4366c37
 
 
 
 
 
 
 
 
 
 
 
 
176f748
4366c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176f748
4366c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176f748
4366c37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

---
language: en
tags:
- sagemaker
- bart
- summarization
license: apache-2.0
datasets:
- samsum
widget:
- text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\
    Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\
    \ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\
    \ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face "
model-index:
- name: philschmid/distilbart-cnn-12-6-samsum
  results:
  - task:
      type: summarization
      name: Summarization
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
    metrics:
    - name: ROUGE-1
      type: rouge
      value: 41.0895
      verified: true
    - name: ROUGE-2
      type: rouge
      value: 20.7459
      verified: true
    - name: ROUGE-L
      type: rouge
      value: 31.5952
      verified: true
    - name: ROUGE-LSUM
      type: rouge
      value: 38.3389
      verified: true
    - name: loss
      type: loss
      value: 1.4566329717636108
      verified: true
    - name: gen_len
      type: gen_len
      value: 59.6032
      verified: true
---

## `distilbart-cnn-12-6-samsum`

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.

For more information look at:
- [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html)
- [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker)
- [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html)
- [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html)
- [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers)

## Hyperparameters
```json
{
    "dataset_name": "samsum",
    "do_eval": true,
    "do_train": true,
    "fp16": true,
    "learning_rate": 5e-05,
    "model_name_or_path": "sshleifer/distilbart-cnn-12-6",
    "num_train_epochs": 3,
    "output_dir": "/opt/ml/model",
    "per_device_eval_batch_size": 8,
    "per_device_train_batch_size": 8,
    "seed": 7
}
```

## Train results

| key | value |
| --- | ----- |
| epoch | 3.0 |
| init_mem_cpu_alloc_delta | 180338 |
| init_mem_cpu_peaked_delta | 18282 |
| init_mem_gpu_alloc_delta | 1222242816 |
| init_mem_gpu_peaked_delta | 0 |
| train_mem_cpu_alloc_delta | 6971403 |
| train_mem_cpu_peaked_delta | 640733 |
| train_mem_gpu_alloc_delta | 4910897664 |
| train_mem_gpu_peaked_delta | 23331969536 |
| train_runtime | 155.2034 |
| train_samples | 14732 |
| train_samples_per_second | 2.242 |

## Eval results

| key | value |
| --- | ----- |
| epoch | 3.0 |
| eval_loss | 1.4209576845169067 |
| eval_mem_cpu_alloc_delta | 868003 |
| eval_mem_cpu_peaked_delta | 18250 |
| eval_mem_gpu_alloc_delta | 0 |
| eval_mem_gpu_peaked_delta | 328244736 |
| eval_runtime | 0.6088 |
| eval_samples | 818 |
| eval_samples_per_second | 1343.647 |


## Usage
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/distilbart-cnn-12-6-samsum")

conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 
Philipp: Sure you can use the new Hugging Face Deep Learning Container. 
Jeff: ok.
Jeff: and how can I get started? 
Jeff: where can I find documentation? 
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face                                           
'''
nlp(conversation)
```