File size: 2,998 Bytes
4366c37 176f748 4366c37 176f748 4366c37 176f748 4366c37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language: en
tags:
- sagemaker
- bart
- summarization
license: apache-2.0
datasets:
- samsum
widget:
- text: |
Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
---
## `distilbart-cnn-12-6-samsum`
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
For more information look at:
- [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html)
- [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker)
- [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html)
- [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html)
- [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers)
## Hyperparameters
```json
{
"dataset_name": "samsum",
"do_eval": true,
"do_train": true,
"fp16": true,
"learning_rate": 5e-05,
"model_name_or_path": "sshleifer/distilbart-cnn-12-6",
"num_train_epochs": 3,
"output_dir": "/opt/ml/model",
"per_device_eval_batch_size": 8,
"per_device_train_batch_size": 8,
"seed": 7
}
```
## Train results
| key | value |
| --- | ----- |
| epoch | 3.0 |
| init_mem_cpu_alloc_delta | 180338 |
| init_mem_cpu_peaked_delta | 18282 |
| init_mem_gpu_alloc_delta | 1222242816 |
| init_mem_gpu_peaked_delta | 0 |
| train_mem_cpu_alloc_delta | 6971403 |
| train_mem_cpu_peaked_delta | 640733 |
| train_mem_gpu_alloc_delta | 4910897664 |
| train_mem_gpu_peaked_delta | 23331969536 |
| train_runtime | 155.2034 |
| train_samples | 14732 |
| train_samples_per_second | 2.242 |
## Eval results
| key | value |
| --- | ----- |
| epoch | 3.0 |
| eval_loss | 1.4209576845169067 |
| eval_mem_cpu_alloc_delta | 868003 |
| eval_mem_cpu_peaked_delta | 18250 |
| eval_mem_gpu_alloc_delta | 0 |
| eval_mem_gpu_peaked_delta | 328244736 |
| eval_runtime | 0.6088 |
| eval_samples | 818 |
| eval_samples_per_second | 1343.647 |
## Usage
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/distilbart-cnn-12-6-samsum")
conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
'''
nlp(conversation)
```
|