File size: 8,984 Bytes
6cf8c56 ea7c0a0 6cf8c56 ea7c0a0 6cf8c56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
---
license: mit
datasets:
- philipp-zettl/qg-tydiqa_squad2
language:
- en
library_name: transformers
pipeline_tag: text2text-generation
widget:
- text: "context: The Hugging Face Hub is a
platform with over 350k models, 75k datasets, and 150k demo apps (Spaces),
all open source and publicly available, in an online platform where people
can easily collaborate and build ML together. The Hub works as a central
place where anyone can explore, experiment, collaborate, and build
technology with Machine Learning. Are you ready to join the path towards
open source Machine Learning? π€"
example_title: π€ Hub
- text: "context: π€ Datasets is a library
for easily accessing and sharing datasets for Audio, Computer Vision, and
Natural Language Processing (NLP) tasks. Load a dataset in a single line
of code, and use our powerful data processing methods to quickly get your
dataset ready for training in a deep learning model. Backed by the Apache
Arrow format, process large datasets with zero-copy reads without any
memory constraints for optimal speed and efficiency. We also feature a
deep integration with the Hugging Face Hub, allowing you to easily load
and share a dataset with the wider machine learning community. Find your
dataset today on the Hugging Face Hub, and take an in-depth look inside of
it with the live viewer."
example_title: π€ datasets
---
# Model Card for t5-small-qg
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model was trained to generate questions out of a given context.
- **Developed by:** [philipp-zettl](https://huggingface.co/philipp-zettl)
- **Model type:** Transformer (T5)
- **Language(s) (NLP):** English
- **License:** M.I.T
- **Finetuned from model [optional]:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
Fine-tune of the amazing [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
It's intended to use the model to generate questions from given context.
The context should not exceed the model's _context_ length.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
No bias evaluation was performed on this model.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
context = "This is a long text based of multiple concatenated paragraphs."
model_inputs = tokenizer([f"context: {context}"], max_length=512, padding=True, truncation=True)
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
attention_mask = torch.tensor(model_inputs['attention_mask']).to(device)
with torch.no_grad():
sample_output = model.generate(input_ids[:1], max_length=85)
sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True)
input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
print(f"Sample Input:\n \"{input_text}\"\n\n")
print(f"Model Output: \"{sample_output_text}\"")
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
This model was trained on [philipp-zettl/qg-tydiqa_squad2](https://huggingface.co/datasets/philipp-zettl/qg-tydiqa_squad2).
The training data was collected by combining [philipp-zettl/tydiqa-task_2-english](https://huggingface.co/datasets/philipp-zettl/tydiqa-task_2-english) with [nvidia/ChatQA-Training-Data#squad2.0](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data/viewer/squad2.0).
From each base dataset we selected the `context` and `question` attributes of each sample. Then joined them together into [philipp-zettl/qg-tydiqa_squad2](https://huggingface.co/datasets/philipp-zettl/qg-tydiqa_squad2).
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
Below you can find the full training pipeline used to achieve this fine-tune.
```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Base model (e.g., T5-large)
# https://huggingface.co/collections/google/flan-t5-release-65005c39e3201fff885e22fb
model_name = 'google/flan-t5-small'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Move only the student model to GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
```
Load dataset
```python
from datasets import load_dataset
# Load dataset
squad_dataset = load_dataset('philipp-zettl/qg-tydiqa_squad2')
# Split the dataset into training and validation
train_dataset = squad_dataset['train']
validation_dataset = squad_dataset['test']
```
Preprocessing: tokenize inputs and labels for faster training cycles, i.e. no need for tokenization during training anymore
```python
def preprocess_batch(batch, tokenizer, max_input_length=512, max_output_length=128):
contexts = batch['context']
answers = batch['question']
inputs = [f"context: {c}" for c in contexts]
model_inputs = tokenizer(inputs, max_length=max_input_length, padding=True, truncation=True)
labels = tokenizer(answers, max_length=max_output_length, padding=True, truncation=True)
model_inputs['labels'] = labels['input_ids']
return model_inputs
# Tokenize the dataset
train_dataset = train_dataset.map(lambda batch: preprocess_batch(batch, tokenizer), batched=True)
validation_dataset = validation_dataset.map(lambda batch: preprocess_batch(batch, tokenizer), batched=True)
# Set format for PyTorch
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
validation_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
```
The train loop
```python
from tqdm import tqdm
from transformers import AdamW, DataCollatorForSeq2Seq
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
torch.cuda.empty_cache()
model.to(device)
# Training parameters
epochs = 3
learning_rate = 5e-5
temperature = 2.0
batch_size = 8
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
# Create a data collator for padding and batching
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
# Create DataLoaders with the data collator
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=data_collator)
validation_dataloader = DataLoader(validation_dataset, batch_size=batch_size, collate_fn=data_collator)
writer = SummaryWriter(comment='t5-small-qg')
print("Starting training...")
# Training loop
for epoch in range(epochs):
model.train()
total_loss = 0
print(f"Epoch {epoch+1}/{epochs}")
progress_bar = tqdm(train_dataloader, desc="Training", leave=False)
for step, batch in enumerate(progress_bar):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
logits = outputs.logits
# Calculate losses
loss = outputs.loss # Cross-entropy loss
writer.add_scalar("Loss/train", loss, step)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
# Verbose logging
if step % 100 == 1 or step == len(train_dataloader) - 1:
progress_bar.set_postfix({
'step': step,
'loss': loss.item(),
})
# Generate a sample output from the student model
model.eval()
with torch.no_grad():
sample_output = model.generate(input_ids[:1], max_length=50)
sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True)
input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
writer.add_text(f"Sample Input", input_text, step)
writer.add_text(f"Sample Output", sample_output_text, step)
model.train()
avg_loss = total_loss / len(train_dataloader)
print(f"Epoch {epoch+1} completed. Average Loss: {avg_loss:.4f}")
writer.add_scalar("AVG Loss/train", avg_loss, epoch)
print("Training complete.")
writer.close()
``` |