File size: 8,984 Bytes
6cf8c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7c0a0
6cf8c56
 
 
 
 
 
 
 
 
 
 
ea7c0a0
6cf8c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
license: mit
datasets:
- philipp-zettl/qg-tydiqa_squad2
language:
- en
library_name: transformers
pipeline_tag: text2text-generation
widget:
  - text: "context: The Hugging Face Hub is a
      platform with over 350k models, 75k datasets, and 150k demo apps (Spaces),
      all open source and publicly available, in an online platform where people
      can easily collaborate and build ML together. The Hub works as a central
      place where anyone can explore, experiment, collaborate, and build
      technology with Machine Learning. Are you ready to join the path towards
      open source Machine Learning? πŸ€—"
    example_title: πŸ€— Hub
  - text: "context: πŸ€— Datasets is a library
      for easily accessing and sharing datasets for Audio, Computer Vision, and
      Natural Language Processing (NLP) tasks. Load a dataset in a single line
      of code, and use our powerful data processing methods to quickly get your
      dataset ready for training in a deep learning model. Backed by the Apache
      Arrow format, process large datasets with zero-copy reads without any
      memory constraints for optimal speed and efficiency. We also feature a
      deep integration with the Hugging Face Hub, allowing you to easily load
      and share a dataset with the wider machine learning community. Find your
      dataset today on the Hugging Face Hub, and take an in-depth look inside of
      it with the live viewer."
    example_title: πŸ€— datasets
---

# Model Card for t5-small-qg

<!-- Provide a quick summary of what the model is/does. -->

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->
This model was trained to generate questions out of a given context.


- **Developed by:** [philipp-zettl](https://huggingface.co/philipp-zettl)
- **Model type:** Transformer (T5)
- **Language(s) (NLP):** English
- **License:** M.I.T
- **Finetuned from model [optional]:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)

### Model Sources [optional]

<!-- Provide the basic links for the model. -->
Fine-tune of the amazing [google/flan-t5-small](https://huggingface.co/google/flan-t5-small)

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
It's intended to use the model to generate questions from given context.
The context should not exceed the model's _context_ length.

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

No bias evaluation was performed on this model.

## How to Get Started with the Model

Use the code below to get started with the model.

```python
context = "This is a long text based of multiple concatenated paragraphs."

model_inputs = tokenizer([f"context: {context}"], max_length=512, padding=True, truncation=True)
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
attention_mask = torch.tensor(model_inputs['attention_mask']).to(device)
with torch.no_grad():
    sample_output = model.generate(input_ids[:1], max_length=85)
    sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True)
    input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
    print(f"Sample Input:\n \"{input_text}\"\n\n")
    print(f"Model Output: \"{sample_output_text}\"")
```

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

This model was trained on [philipp-zettl/qg-tydiqa_squad2](https://huggingface.co/datasets/philipp-zettl/qg-tydiqa_squad2).

The training data was collected by combining [philipp-zettl/tydiqa-task_2-english](https://huggingface.co/datasets/philipp-zettl/tydiqa-task_2-english) with [nvidia/ChatQA-Training-Data#squad2.0](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data/viewer/squad2.0).

From each base dataset we selected the `context` and `question` attributes of each sample. Then joined them together into [philipp-zettl/qg-tydiqa_squad2](https://huggingface.co/datasets/philipp-zettl/qg-tydiqa_squad2).

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
Below you can find the full training pipeline used to achieve this fine-tune.

```python
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Base model (e.g., T5-large)
# https://huggingface.co/collections/google/flan-t5-release-65005c39e3201fff885e22fb
model_name = 'google/flan-t5-small'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Move only the student model to GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
```

Load dataset
```python
from datasets import load_dataset

# Load dataset
squad_dataset = load_dataset('philipp-zettl/qg-tydiqa_squad2')

# Split the dataset into training and validation
train_dataset = squad_dataset['train']
validation_dataset = squad_dataset['test']
```

Preprocessing: tokenize inputs and labels for faster training cycles, i.e. no need for tokenization during training anymore
```python
def preprocess_batch(batch, tokenizer, max_input_length=512, max_output_length=128):
    contexts = batch['context']
    answers = batch['question']

    inputs = [f"context: {c}" for c in contexts]
    model_inputs = tokenizer(inputs, max_length=max_input_length, padding=True, truncation=True)

    labels = tokenizer(answers, max_length=max_output_length, padding=True, truncation=True)
    model_inputs['labels'] = labels['input_ids']

    return model_inputs

# Tokenize the dataset
train_dataset = train_dataset.map(lambda batch: preprocess_batch(batch, tokenizer), batched=True)
validation_dataset = validation_dataset.map(lambda batch: preprocess_batch(batch, tokenizer), batched=True)

# Set format for PyTorch
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
validation_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
```

The train loop
```python
from tqdm import tqdm
from transformers import AdamW, DataCollatorForSeq2Seq
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

torch.cuda.empty_cache()

model.to(device)

# Training parameters
epochs = 3
learning_rate = 5e-5
temperature = 2.0
batch_size = 8
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

# Create a data collator for padding and batching
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)

# Create DataLoaders with the data collator
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=data_collator)
validation_dataloader = DataLoader(validation_dataset, batch_size=batch_size, collate_fn=data_collator)

writer = SummaryWriter(comment='t5-small-qg')

print("Starting training...")

# Training loop
for epoch in range(epochs):
    model.train()
    total_loss = 0
    print(f"Epoch {epoch+1}/{epochs}")

    progress_bar = tqdm(train_dataloader, desc="Training", leave=False)

    for step, batch in enumerate(progress_bar):
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        labels = batch['labels'].to(device)

        outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)
        logits = outputs.logits

        # Calculate losses
        loss = outputs.loss  # Cross-entropy loss
        writer.add_scalar("Loss/train", loss, step)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()

        # Verbose logging
        if step % 100 == 1 or step == len(train_dataloader) - 1:
            progress_bar.set_postfix({
                'step': step,
                'loss': loss.item(),
            })

            # Generate a sample output from the student model
            model.eval()
            with torch.no_grad():
                sample_output = model.generate(input_ids[:1], max_length=50)
                sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True)
                input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
                writer.add_text(f"Sample Input", input_text, step)
                writer.add_text(f"Sample Output", sample_output_text, step)
            model.train()

    avg_loss = total_loss / len(train_dataloader)
    print(f"Epoch {epoch+1} completed. Average Loss: {avg_loss:.4f}")
    writer.add_scalar("AVG Loss/train", avg_loss, epoch)

print("Training complete.")
writer.close()
```