--- license: mit datasets: - philipp-zettl/long-qa language: - en library_name: transformers pipeline_tag: text2text-generation widget: - text: "question: How many models are in the hub? context: The Hugging Face Hub is a platform with over 350k models, 75k datasets, and 150k demo apps (Spaces), all open source and publicly available, in an online platform where people can easily collaborate and build ML together. The Hub works as a central place where anyone can explore, experiment, collaborate, and build technology with Machine Learning. Are you ready to join the path towards open source Machine Learning? 🤗" example_title: 🤗 Hub - text: "question: What type of data is available? context: 🤗 Datasets is a library for easily accessing and sharing datasets for Audio, Computer Vision, and Natural Language Processing (NLP) tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider machine learning community. Find your dataset today on the Hugging Face Hub, and take an in-depth look inside of it with the live viewer." example_title: 🤗 datasets --- # Model Card for t5-small-long-qa ## Model Details ### Model Description This model was trained to generate answers for questions out of a given context. - **Developed by:** [philipp-zettl](https://huggingface.co/philipp-zettl) - **Model type:** Transformer (T5) - **Language(s) (NLP):** English - **License:** M.I.T - **Finetuned from model [optional]:** [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) ### Model Sources [optional] Fine-tune of the amazing [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) ## Uses It's intended to use the model to answers for questions from given context. The context should not exceed the model's _context_ length. ## Bias, Risks, and Limitations No bias evaluation was performed on this model. ## How to Get Started with the Model Use the code below to get started with the model. ```python context = "This is a long text based of multiple concatenated paragraphs." question = "My question about something mentioned inside the context." model_inputs = tokenizer([f"question: {question} context: {context}"], max_length=512, padding=True, truncation=True) input_ids = torch.tensor(model_inputs['input_ids']).to(device) attention_mask = torch.tensor(model_inputs['attention_mask']).to(device) with torch.no_grad(): sample_output = model.generate(input_ids[:1], max_length=85) sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True) input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) print(f"Sample Input:\n \"{input_text}\"\n\n") print(f"Model Output: \"{sample_output_text}\"") ``` ## Training Details ### Training Data This model was trained on [philipp-zettl/long-qa](https://huggingface.co/datasets/philipp-zettl/long-qa). A synthetic data set created from [philipp-zettl/qg-tidyqa_squad2](https://huggingface.co/datasets/philipp-zettl/qg-tydiqa_squad2) using [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct). The data set was created by prompting Phi-3 using the prompt template ```python msg = f""" Answer the following question using the content provided in the context. Do not answer questions where the answer isn't inside the context. Question: {sample['question']} Context: {sample['context']} """ ``` After generating synthetic answers, the data set was manually corrected and validated to ensure high quality as well as consistent longer answers than the original data sets. ### Training Procedure Below you can find the full training pipeline used to achieve this fine-tune. ```python import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Base model (e.g., T5-large) # https://huggingface.co/collections/google/flan-t5-release-65005c39e3201fff885e22fb model_name = 'google/flan-t5-small' model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Move only the student model to GPU if available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) ``` Load dataset ```python from datasets import load_dataset # Load dataset ds = load_dataset('philipp-zettl/long-qa') # Split the dataset into training and validation train_dataset = ds['train'] validation_dataset = ds['test'] ``` Preprocessing: tokenize inputs and labels for faster training cycles, i.e. no need for tokenization during training anymore ```python def preprocess_batch(batch, tokenizer, max_input_length=512, max_output_length=128): questions = batch['question'] contexts = batch['context'] answers = batch['answer'] inputs = [f"question: {q} context: {c}" for q, c in zip(questions, contexts)] model_inputs = tokenizer(inputs, max_length=max_input_length, padding=True, truncation=True) labels = tokenizer(answers, max_length=max_output_length, padding=True, truncation=True) model_inputs['labels'] = labels['input_ids'] return model_inputs # Tokenize the dataset train_dataset = train_dataset.map(lambda batch: preprocess_batch(batch, tokenizer), batched=True) validation_dataset = validation_dataset.map(lambda batch: preprocess_batch(batch, tokenizer), batched=True) # Set format for PyTorch train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels']) validation_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels']) ``` The train loop ```python from tqdm import tqdm from transformers import AdamW, DataCollatorForSeq2Seq from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter torch.cuda.empty_cache() model_name = 'google/flan-t5-small' model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Move only the student model to GPU if available device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) # Training parameters epochs = 50 learning_rate = 3e-5 temperature = 2.0 batch_size = 8 optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) # Create a data collator for padding and batching data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model) # Create DataLoaders with the data collator train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=data_collator) validation_dataloader = DataLoader(validation_dataset, batch_size=batch_size, collate_fn=data_collator) writer = SummaryWriter(comment='t5-small-long-qa') # Store losses and learning rates train_losses = [] val_losses = [] learning_rates = [] print("Starting training...") # Training loop for epoch in range(epochs): model.train() total_loss = 0 print(f"Epoch {epoch+1}/{epochs}") progress_bar = tqdm(train_dataloader, desc="Training", leave=False) for step, batch in enumerate(progress_bar): # Move student inputs to GPU input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) labels = batch['labels'].to(device) # Teacher forward pass on CPU outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) logits = outputs.logits # Calculate losses loss = outputs.loss # Cross-entropy loss writer.add_scalar("Loss/train", loss, epoch * len(train_dataloader) + step) # Backpropagation optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() # Verbose logging if step % len(train_dataloader)//10 == 1 or step == len(train_dataloader) - 1: progress_bar.set_postfix({ 'step': step, 'loss': loss.item(), }) # Generate a sample output from the student model model.eval() with torch.no_grad(): sample_output = model.generate(input_ids[:1], max_length=50) sample_output_text = tokenizer.decode(sample_output[0], skip_special_tokens=True) input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True) writer.add_text(f"Sample Input", input_text, step) writer.add_text(f"Sample Output", sample_output_text, step) model.train() avg_train_loss = total_loss / len(train_dataloader) train_losses.append(avg_train_loss) learning_rates.append(optimizer.param_groups[0]['lr']) # Validation step model.eval() total_val_loss = 0 with torch.no_grad(): for batch in validation_dataloader: input_ids = batch['input_ids'].to(device) attention_mask = batch['attention_mask'].to(device) labels = batch['labels'].to(device) outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) val_loss = outputs.loss total_val_loss += val_loss.item() avg_val_loss = total_val_loss / len(validation_dataloader) val_losses.append(avg_val_loss) writer.add_scalar("AVG Loss/train", avg_train_loss, epoch) writer.add_scalar("AVG Loss/val", avg_val_loss, epoch) print(f"Epoch {epoch+1} completed. Avg Train Loss: {avg_train_loss:.4f}, Avg Val Loss: {avg_val_loss:.4f}") print("Training complete.") writer.close() ```