plamo-13b / modeling_plamo.py
hibikaze's picture
Fixed beam search error when using multiple GPUs
14a911c
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
class DecoderInput(NamedTuple):
hidden_states: torch.Tensor
position_ids: torch.Tensor
attention_mask: Optional[torch.Tensor] = None
past_key_values: Optional[List[torch.FloatTensor]] = None
output_hidden_states: Optional[bool] = False
output_attentions: Optional[bool] = False
use_cache: Optional[bool] = False
gradient_checkpointing: bool = False
class DecoderOutput(NamedTuple):
hidden_states: torch.Tensor
all_hidden_states: Optional[Tuple[torch.Tensor, ...]]
all_self_attns: Optional[Tuple[torch.Tensor, ...]]
next_decoder_cache: Optional[Tuple[torch.Tensor, ...]]
class PlamoConfig(PretrainedConfig): # type: ignore
model_type: str = "plamo"
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 4096,
intermediate_size: int = 13312,
num_hidden_layers: int = 32,
num_attention_heads: int = 32,
num_key_value_heads: Optional[int] = None,
max_position_embeddings: int = 2048,
initializer_range: float = 0.02,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
tokenizer_class: str = "PlamoTokenizer",
pad_token_id: Optional[int] = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
n_shared_head: int = 8,
tie_word_embeddings: bool = False,
**kwargs: Any,
) -> None:
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.n_shared_head = n_shared_head
super().__init__(
tokenizer_class=tokenizer_class,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: Tuple[int, int], dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
) -> torch.Tensor:
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None) -> torch.Tensor:
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # type: ignore
class RotaryEmbedding(torch.nn.Module):
def __init__(
self, dim: int, max_position_embeddings: int = 2048, base: int = 10000, device: Optional[torch.device] = None
) -> None:
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None:
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) # type: ignore
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]:
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
)
def _rotate_half(x: torch.Tensor) -> torch.Tensor:
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor:
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
x_embed = (x * cos) + (_rotate_half(x) * sin)
return x_embed
class RMSNorm(nn.Module):
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Attention(torch.nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
head_dim = self.hidden_size // config.num_attention_heads
self.max_position_embeddings = config.max_position_embeddings
self.q_num_heads = config.num_attention_heads
self.qk_dim = self.v_dim = head_dim
self.k_num_heads = self.v_num_heads = int(np.ceil(self.q_num_heads / config.n_shared_head))
self.q_proj = nn.Linear(self.hidden_size, self.q_num_heads * self.qk_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.k_num_heads * self.qk_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.v_num_heads * self.v_dim, bias=False)
self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False)
self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.max_position_embeddings)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.v_num_heads, self.v_dim).transpose(1, 2)
def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor:
return t.repeat(1, repeat, 1, 1)[:, :target]
# expand shared kv
assert self.k_num_heads == self.v_num_heads
key_states = _expand_kv(key_states, self.config.n_shared_head, self.q_num_heads)
value_states = _expand_kv(value_states, self.config.n_shared_head, self.q_num_heads)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
assert position_ids is not None
query_states = _rotary_pos_emb(query_states, cos, sin, position_ids)
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class MLP(nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = torch.nn.functional.silu
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # type: ignore
class PlamoDecoderLayer(torch.nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.self_attn = Attention(config)
self.mlp = MLP(config)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[Any, ...]:
# from LlamaDecoder
residual = hidden_states
hidden_states = self.norm(hidden_states)
# Self Attention
hidden_states_sa, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
# Fully Connected
hidden_states_mlp = self.mlp(hidden_states)
# Residual
hidden_states = residual + hidden_states_sa + hidden_states_mlp
outputs: Any = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs # type: ignore
class PlamoDecoder(torch.nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.layers = torch.nn.ModuleList([PlamoDecoderLayer(config) for _ in range(config.num_hidden_layers)])
def forward(self, x: DecoderInput) -> DecoderOutput:
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = () if x.output_hidden_states else None
all_self_attns: Optional[Tuple[torch.Tensor, ...]] = () if x.output_attentions else None
next_decoder_cache: Optional[Tuple[torch.Tensor, ...]] = () if x.use_cache else None
hidden_states = x.hidden_states
for idx, decoder_layer in enumerate(self.layers):
if x.output_hidden_states:
assert all_hidden_states is not None
all_hidden_states += (hidden_states,)
past_key_value = x.past_key_values[idx] if x.past_key_values is not None else None
if self.training and x.gradient_checkpointing:
def create_custom_forward(module): # type: ignore
def custom_forward(*inputs): # type: ignore
# None for past_key_value
return module(*inputs, x.output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer), # type: ignore
hidden_states,
x.attention_mask,
x.position_ids,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=x.attention_mask,
position_ids=x.position_ids,
past_key_value=past_key_value,
output_attentions=x.output_attentions,
use_cache=x.use_cache,
)
hidden_states = layer_outputs[0]
if x.use_cache:
cache = layer_outputs[2 if x.output_attentions else 1]
assert cache is not None
assert next_decoder_cache is not None
next_decoder_cache += (cache,)
if x.output_attentions:
assert layer_outputs[1] is not None
assert all_self_attns is not None
all_self_attns += (layer_outputs[1],)
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns, next_decoder_cache)
class PlamoPreTrainedModel(PreTrainedModel): # type: ignore
config_class = PlamoConfig
_no_split_modules: List[str]
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PlamoDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module: torch.nn.Module) -> None:
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def _set_gradient_checkpointing(self, module: torch.nn.Module, value: bool = False) -> None:
module.gradient_checkpointing = value # type: ignore
class PlamoModel(PlamoPreTrainedModel):
def __init__(self, config: PlamoConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = PlamoDecoder(config) # type: ignore
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> torch.nn.Embedding:
return self.embed_tokens
def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(
self,
attention_mask: torch.Tensor,
input_shape: Tuple[int, int],
inputs_embeds: Optional[torch.FloatTensor],
past_key_values_length: int,
) -> Optional[torch.Tensor]:
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask: Optional[torch.Tensor] = None
if input_shape[-1] > 1:
assert inputs_embeds is not None
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
assert inputs_embeds is not None
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
assert input_ids is not None
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
# decoder layers
out = self.layers(
DecoderInput(
hidden_states,
position_ids,
attention_mask,
past_key_values,
output_hidden_states,
output_attentions,
use_cache,
self.gradient_checkpointing,
)
)
assert isinstance(out, DecoderOutput)
hidden_states = out.hidden_states
all_hidden_states = out.all_hidden_states
all_self_attns = out.all_self_attns
next_decoder_cache = out.next_decoder_cache
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
assert all_hidden_states is not None
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class PlamoForCausalLM(PlamoPreTrainedModel):
def __init__(self, config: PretrainedConfig) -> None:
super().__init__(config)
self.model = PlamoModel(config)
self.lm_head: torch.nn.Module = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> torch.nn.Embedding:
return self.model.embed_tokens
def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
self.model.embed_tokens = value
def get_output_embeddings(self) -> torch.nn.Module:
return self.lm_head
def set_output_embeddings(self, new_embeddings: torch.nn.Module) -> None:
self.lm_head = new_embeddings
def set_decoder(self, decoder: PlamoModel) -> None:
self.model = decoder
def get_decoder(self) -> PlamoModel:
return self.model
def forward( # type: ignore
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
assert input_ids is not None
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
past_key_values: Optional[List[torch.FloatTensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: Any,
) -> Dict[str, Any]:
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs: Dict[str, Any] = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values: List[torch.FloatTensor], beam_idx: int) -> Tuple[Any, ...]:
reordered_past: Tuple[Any, ...] = ()
for layer_past in past_key_values:
reordered_past += (tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),)
return reordered_past