|
from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
|
|
|
class DecoderInput(NamedTuple): |
|
hidden_states: torch.Tensor |
|
position_ids: torch.Tensor |
|
attention_mask: Optional[torch.Tensor] = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
output_hidden_states: Optional[bool] = False |
|
output_attentions: Optional[bool] = False |
|
use_cache: Optional[bool] = False |
|
gradient_checkpointing: bool = False |
|
|
|
|
|
class DecoderOutput(NamedTuple): |
|
hidden_states: torch.Tensor |
|
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] |
|
all_self_attns: Optional[Tuple[torch.Tensor, ...]] |
|
next_decoder_cache: Optional[Tuple[torch.Tensor, ...]] |
|
|
|
|
|
class PlamoConfig(PretrainedConfig): |
|
model_type: str = "plamo" |
|
|
|
def __init__( |
|
self, |
|
vocab_size: int = 32000, |
|
hidden_size: int = 4096, |
|
intermediate_size: int = 13312, |
|
num_hidden_layers: int = 32, |
|
num_attention_heads: int = 32, |
|
num_key_value_heads: Optional[int] = None, |
|
max_position_embeddings: int = 2048, |
|
initializer_range: float = 0.02, |
|
rms_norm_eps: float = 1e-6, |
|
use_cache: bool = True, |
|
tokenizer_class: str = "PlamoTokenizer", |
|
pad_token_id: Optional[int] = None, |
|
bos_token_id: int = 1, |
|
eos_token_id: int = 2, |
|
n_shared_head: int = 8, |
|
tie_word_embeddings: bool = False, |
|
**kwargs: Any, |
|
) -> None: |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.initializer_range = initializer_range |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
|
|
self.n_shared_head = n_shared_head |
|
|
|
super().__init__( |
|
tokenizer_class=tokenizer_class, |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: Tuple[int, int], dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
) -> torch.Tensor: |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None) -> torch.Tensor: |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__( |
|
self, dim: int, max_position_embeddings: int = 2048, base: int = 10000, device: Optional[torch.device] = None |
|
) -> None: |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) |
|
|
|
def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
def _rotate_half(x: torch.Tensor) -> torch.Tensor: |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def _rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor: |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
x_embed = (x * cos) + (_rotate_half(x) * sin) |
|
return x_embed |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class Attention(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
head_dim = self.hidden_size // config.num_attention_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
self.q_num_heads = config.num_attention_heads |
|
self.qk_dim = self.v_dim = head_dim |
|
self.k_num_heads = self.v_num_heads = int(np.ceil(self.q_num_heads / config.n_shared_head)) |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.q_num_heads * self.qk_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.k_num_heads * self.qk_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.v_num_heads * self.v_dim, bias=False) |
|
self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False) |
|
self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.max_position_embeddings) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.v_num_heads, self.v_dim).transpose(1, 2) |
|
|
|
def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor: |
|
return t.repeat(1, repeat, 1, 1)[:, :target] |
|
|
|
|
|
assert self.k_num_heads == self.v_num_heads |
|
key_states = _expand_kv(key_states, self.config.n_shared_head, self.q_num_heads) |
|
value_states = _expand_kv(value_states, self.config.n_shared_head, self.q_num_heads) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
assert position_ids is not None |
|
query_states = _rotary_pos_emb(query_states, cos, sin, position_ids) |
|
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask) |
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = torch.nn.functional.silu |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
class PlamoDecoderLayer(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = Attention(config) |
|
self.mlp = MLP(config) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[Any, ...]: |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
hidden_states_sa, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
|
|
hidden_states_mlp = self.mlp(hidden_states) |
|
|
|
|
|
hidden_states = residual + hidden_states_sa + hidden_states_mlp |
|
|
|
outputs: Any = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class PlamoDecoder(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.layers = torch.nn.ModuleList([PlamoDecoderLayer(config) for _ in range(config.num_hidden_layers)]) |
|
|
|
def forward(self, x: DecoderInput) -> DecoderOutput: |
|
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = () if x.output_hidden_states else None |
|
all_self_attns: Optional[Tuple[torch.Tensor, ...]] = () if x.output_attentions else None |
|
next_decoder_cache: Optional[Tuple[torch.Tensor, ...]] = () if x.use_cache else None |
|
hidden_states = x.hidden_states |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if x.output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = x.past_key_values[idx] if x.past_key_values is not None else None |
|
|
|
if self.training and x.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, x.output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
x.attention_mask, |
|
x.position_ids, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=x.attention_mask, |
|
position_ids=x.position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=x.output_attentions, |
|
use_cache=x.use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if x.use_cache: |
|
cache = layer_outputs[2 if x.output_attentions else 1] |
|
assert cache is not None |
|
assert next_decoder_cache is not None |
|
next_decoder_cache += (cache,) |
|
|
|
if x.output_attentions: |
|
assert layer_outputs[1] is not None |
|
assert all_self_attns is not None |
|
all_self_attns += (layer_outputs[1],) |
|
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns, next_decoder_cache) |
|
|
|
|
|
class PlamoPreTrainedModel(PreTrainedModel): |
|
config_class = PlamoConfig |
|
_no_split_modules: List[str] |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["PlamoDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module: torch.nn.Module) -> None: |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
def _set_gradient_checkpointing(self, module: torch.nn.Module, value: bool = False) -> None: |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class PlamoModel(PlamoPreTrainedModel): |
|
def __init__(self, config: PlamoConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = PlamoDecoder(config) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Embedding: |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value: torch.nn.Embedding) -> None: |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_shape: Tuple[int, int], |
|
inputs_embeds: Optional[torch.FloatTensor], |
|
past_key_values_length: int, |
|
) -> Optional[torch.Tensor]: |
|
|
|
|
|
combined_attention_mask: Optional[torch.Tensor] = None |
|
if input_shape[-1] > 1: |
|
assert inputs_embeds is not None |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
assert inputs_embeds is not None |
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
assert input_ids is not None |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if position_ids is None: |
|
device = input_ids.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
use_cache = False |
|
|
|
|
|
out = self.layers( |
|
DecoderInput( |
|
hidden_states, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
output_hidden_states, |
|
output_attentions, |
|
use_cache, |
|
self.gradient_checkpointing, |
|
) |
|
) |
|
assert isinstance(out, DecoderOutput) |
|
hidden_states = out.hidden_states |
|
all_hidden_states = out.all_hidden_states |
|
all_self_attns = out.all_self_attns |
|
next_decoder_cache = out.next_decoder_cache |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class PlamoForCausalLM(PlamoPreTrainedModel): |
|
def __init__(self, config: PretrainedConfig) -> None: |
|
super().__init__(config) |
|
self.model = PlamoModel(config) |
|
|
|
self.lm_head: torch.nn.Module = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Embedding: |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value: torch.nn.Embedding) -> None: |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self) -> torch.nn.Module: |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings: torch.nn.Module) -> None: |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder: PlamoModel) -> None: |
|
self.model = decoder |
|
|
|
def get_decoder(self) -> PlamoModel: |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM |
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
assert input_ids is not None |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.Tensor, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
**kwargs: Any, |
|
) -> Dict[str, Any]: |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs: Dict[str, Any] = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values: List[torch.FloatTensor], beam_idx: int) -> Tuple[Any, ...]: |
|
reordered_past: Tuple[Any, ...] = () |
|
for layer_past in past_key_values: |
|
reordered_past += (tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),) |
|
return reordered_past |
|
|