--- license: apache-2.0 language: - vi pipeline_tag: token-classification tags: - vietnamese - accents inserter metrics: - accuracy --- # A Transformer model for inserting Vietnamese accent marks This model is finetuned from the XLM-Roberta Large. Example input: Nhin nhung mua thu di Target output: Nhìn những mùa thu đi ## Model training This problem was modelled as a token classification problem. For each input token, the goal is to asssign a "tag" that will transform it to the accented token. For more details on the training process, please refer to this blog post. ## How to use this model There are just a few steps: - Step 1: Load the model as a token classification model (`AutoModelForTokenClassification`). - Step 2: Run the input through the model to obtain the tag index for each input token. - Step 3: Use the tags' index to retreive the actual tags in the file `selected_tags_names.txt`. Then, apply the conversion indicated by the tag to each token to obtain accented tokens. ### Step 1: Load model Note: Install *transformers*, *torch*, *numpy* packages first. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification import torch import numpy as np def load_trained_transformer_model(): model_path = "peterhung/vietnamese-accent-marker-xlm-roberta" tokenizer = AutoTokenizer.from_pretrained(model_path, add_prefix_space=True) model = AutoModelForTokenClassification.from_pretrained(model_path) return model, tokenizer model, tokenizer = load_trained_transformer_model() ``` ### Step 2: Run input text through the model ```python # only needed if it's run on GPU device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model.to(device) # set to eval mode model.eval() def insert_accents(text, model, tokenizer): our_tokens = text.strip().split() # the tokenizer may further split our tokens inputs = tokenizer(our_tokens, is_split_into_words=True, truncation=True, padding=True, return_tensors="pt" ) input_ids = inputs['input_ids'] tokens = tokenizer.convert_ids_to_tokens(input_ids[0]) tokens = tokens[1:-1] with torch.no_grad(): inputs.to(device) outputs = model(**inputs) predictions = outputs["logits"].cpu().numpy() predictions = np.argmax(predictions, axis=2) # exclude output at index 0 and the last index, which correspond to '' and '' predictions = predictions[0][1:-1] assert len(tokens) == len(predictions) return tokens, predictions text = "Nhin nhung mua thu di, em nghe sau len trong nang." tokens, predictions = insert_accents(text, model, tokenizer) ``` ### Step3: Obtain the accented words 3.1 Download the tags set file (`selected_tags_names.txt`) from this repo. Suppose that it's put int the current dir, we can then load it: ```python def _load_tags_set(fpath): labels = [] with open(fpath, 'r') as f: for line in f: line = line.strip() if line: labels.append(line) return labels label_list = _load_tags_set("./selected_tags_names.txt") assert len(label_list) == 528, f"Expect {len(label_list)} tags" ``` 3.2 Print out `tokens` and `predictions` obtained above to see what we're having here ```python print(tokens) print(list(f"{pred} ({label_list[pred]})" for pred in predictions)) ``` Obtained ```python ['▁Nhi', 'n', '▁nhu', 'ng', '▁mua', '▁thu', '▁di', ',', '▁em', '▁nghe', '▁sau', '▁len', '▁trong', '▁nang', '.'] ['217 (i-ì)', '217 (i-ì)', '388 (u-ữ)', '388 (u-ữ)', '407 (ua-ùa)', '378 (u-u)', '120 (di-đi)', '0 (-)', '185 (e-e)', '185 (e-e)', '41 (au-âu)', '188 (e-ê)', '302 (o-o)', '14 (a-ắ)', '0 (-)'] ``` We can see here that our original words have been further split into smaller tokens by the model. But we know the first token of each word starts with the special char "▁". Here, we'd need to merge these tokens (and similarly, the corresponding tags) into our original Vietnamese words. Then, for each word, we'd apply the first tag (if it's associated with more than 1 tags) that change the word. This can be done as follows: ```python TOKENIZER_WORD_PREFIX = "▁" def merge_tokens_and_preds(tokens, predictions): merged_tokens_preds = [] i = 0 while i < len(tokens): tok = tokens[i] label_indexes = set([predictions[i]]) if tok.startswith(TOKENIZER_WORD_PREFIX): # start a new word tok_no_prefix = tok[len(TOKENIZER_WORD_PREFIX):] cur_word_toks = [tok_no_prefix] # check if subsequent toks are part of this word j = i + 1 while j < len(tokens): if not tokens[j].startswith(TOKENIZER_WORD_PREFIX): cur_word_toks.append(tokens[j]) label_indexes.add(predictions[j]) j += 1 else: break cur_word = ''.join(cur_word_toks) merged_tokens_preds.append((cur_word, label_indexes)) i = j else: merged_tokens_preds.append((tok, label_indexes)) i += 1 return merged_tokens_preds merged_tokens_preds = merge_tokens_and_preds(tokens, predictions) print(merged_tokens_preds) ``` Obtained: ```python [('Nhin', {217}), ('nhung', {388}), ('mua', {407}), ('thu', {378}), ('di,', {120, 0}), ('em', {185}), ('nghe', {185}), ('sau', {41}), ('len', {188}), ('trong', {302}), ('nang.', {0, 14})] ``` For each word, we now have a set of tag indexes to apply to it. For ex, for the first word "Nhin" above, we'd apply the tag at index `217` in our tags set. The following is our final part: ```python def get_accented_words(merged_tokens_preds, label_list): accented_words = [] for word_raw, label_indexes in merged_tokens_preds: # use the first label that changes word_raw for label_index in label_indexes: tag_name = label_list[int(label_index)] raw, vowel = tag_name.split("-") if raw and raw in word_raw: word_accented = word_raw.replace(raw, vowel) break else: word_accented = word_raw accented_words.append(word_accented) return accented_words accented_words = get_accented_words(merged_tokens_preds, label_list) print(accented_words) ``` Obtained: ```python ['Nhìn', 'những', 'mùa', 'thu', 'đi,', 'em', 'nghe', 'sâu', 'lên', 'trong', 'nắng.'] ``` In this example, the model made 1 mistake with the word "sầu" (but predicted "sâu"). ## Limitations - This model will accept a maximum of 512 tokens, which is a limitation inherited from the base pretrained XLM-Roberta model. - It has a higher accuracy (97%) than an HMM version (91%). More info can be found here. ## Live Demo - There is a live demo of this model available here. This demo is run on CPU so the speed is expected to be not as fast as when run on GPU. - You can also use the inference API on the right side of this page (provided by HF automatically) to see the tags (indexes) assigned to each word.