File size: 7,810 Bytes
cfe60a2 d5a61ec cfe60a2 c4b12a7 fdebe5b cfe60a2 91a976f cfe60a2 fdebe5b cfe60a2 91a976f cfe60a2 fdebe5b 91a976f fdebe5b cfe60a2 fdebe5b d5a61ec fdebe5b d5a61ec fdebe5b 6207e35 fdebe5b d5a61ec fdebe5b d5a61ec fdebe5b cfe60a2 fdebe5b d5a61ec fdebe5b cfe60a2 d5a61ec 8e4edc4 d5a61ec cfe60a2 fdebe5b d5a61ec 3fce884 d5a61ec 8e4edc4 d5a61ec c3e1058 c4b12a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
---
license: apache-2.0
language:
- vi
pipeline_tag: token-classification
tags:
- vietnamese
- accents inserter
- diacritics
metrics:
- accuracy
---
# A Transformer model for inserting Vietnamese accent marks
This model inserts accent marks (diacritics) for Vietnamese texts that don't have them (or texts with some words accented and some not).
Example input: Nhin nhung mua thu di
Target output: Nhìn những mùa thu đi
## Model training
This problem was modelled as a token classification problem. For each input token, the goal is to asssign a "tag" that will transform it
to the accented token.
This model is finetuned from the XLM-Roberta Large. For more details on the training process, please refer to this
<a href="https://peterhung.org/tech/insert-vietnamese-accent-transformer-model/" target="_blank">blog post</a>.
## How to use this model
There are just a few steps:
- Step 1: Load the model as a token classification model (`AutoModelForTokenClassification`).
- Step 2: Run the input through the model to obtain the tag index for each input token.
- Step 3: Use the tags' index to retreive the actual tags in the file `selected_tags_names.txt`. Then,
apply the conversion indicated by the tag to each token to obtain accented tokens.
### Step 1: Load model
Note: Install *transformers*, *torch*, *numpy* packages first.
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
import numpy as np
def load_trained_transformer_model():
model_path = "peterhung/vietnamese-accent-marker-xlm-roberta"
tokenizer = AutoTokenizer.from_pretrained(model_path, add_prefix_space=True)
model = AutoModelForTokenClassification.from_pretrained(model_path)
return model, tokenizer
model, tokenizer = load_trained_transformer_model()
```
### Step 2: Run input text through the model
```python
# only needed if it's run on GPU
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
# set to eval mode
model.eval()
def insert_accents(text, model, tokenizer):
our_tokens = text.strip().split()
# the tokenizer may further split our tokens
inputs = tokenizer(our_tokens,
is_split_into_words=True,
truncation=True,
padding=True,
return_tensors="pt"
)
input_ids = inputs['input_ids']
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
tokens = tokens[1:-1]
with torch.no_grad():
inputs.to(device)
outputs = model(**inputs)
predictions = outputs["logits"].cpu().numpy()
predictions = np.argmax(predictions, axis=2)
# exclude output at index 0 and the last index, which correspond to '<s>' and '</s>'
predictions = predictions[0][1:-1]
assert len(tokens) == len(predictions)
return tokens, predictions
text = "Nhin nhung mua thu di, em nghe sau len trong nang."
tokens, predictions = insert_accents(text, model, tokenizer)
```
### Step3: Obtain the accented words
3.1 Download the tags set file (`selected_tags_names.txt`) from this repo.
Suppose that it's put int the current dir, we can then load it:
```python
def _load_tags_set(fpath):
labels = []
with open(fpath, 'r') as f:
for line in f:
line = line.strip()
if line:
labels.append(line)
return labels
label_list = _load_tags_set("./selected_tags_names.txt")
assert len(label_list) == 528, f"Expect {len(label_list)} tags"
```
3.2 Print out `tokens` and `predictions` obtained above to see what we're having here
```python
print(tokens)
print(list(f"{pred} ({label_list[pred]})" for pred in predictions))
```
Obtained
```python
['▁Nhi', 'n', '▁nhu', 'ng', '▁mua', '▁thu', '▁di', ',', '▁em', '▁nghe', '▁sau', '▁len', '▁trong', '▁nang', '.']
['217 (i-ì)', '217 (i-ì)', '388 (u-ữ)', '388 (u-ữ)', '407 (ua-ùa)', '378 (u-u)', '120 (di-đi)', '0 (-)', '185 (e-e)', '185 (e-e)', '41 (au-âu)', '188 (e-ê)', '302 (o-o)', '14 (a-ắ)', '0 (-)']
```
We can see here that our original words have been further split into smaller tokens by the model. But we know the first token of each word
starts with the special char "▁".
Here, we'd need to merge these tokens (and similarly, the corresponding tags) into our original Vietnamese words.
Then, for each word, we'd apply the first tag (if it's associated with more than 1 tags) that change the word.
This can be done as follows:
```python
TOKENIZER_WORD_PREFIX = "▁"
def merge_tokens_and_preds(tokens, predictions):
merged_tokens_preds = []
i = 0
while i < len(tokens):
tok = tokens[i]
label_indexes = set([predictions[i]])
if tok.startswith(TOKENIZER_WORD_PREFIX): # start a new word
tok_no_prefix = tok[len(TOKENIZER_WORD_PREFIX):]
cur_word_toks = [tok_no_prefix]
# check if subsequent toks are part of this word
j = i + 1
while j < len(tokens):
if not tokens[j].startswith(TOKENIZER_WORD_PREFIX):
cur_word_toks.append(tokens[j])
label_indexes.add(predictions[j])
j += 1
else:
break
cur_word = ''.join(cur_word_toks)
merged_tokens_preds.append((cur_word, label_indexes))
i = j
else:
merged_tokens_preds.append((tok, label_indexes))
i += 1
return merged_tokens_preds
merged_tokens_preds = merge_tokens_and_preds(tokens, predictions)
print(merged_tokens_preds)
```
Obtained:
```python
[('Nhin', {217}), ('nhung', {388}), ('mua', {407}), ('thu', {378}), ('di,', {120, 0}), ('em', {185}), ('nghe', {185}), ('sau', {41}), ('len', {188}), ('trong', {302}), ('nang.', {0, 14})]
```
For each word, we now have a set of tag indexes to apply to it.
For ex, for the first word "Nhin" above, we'd apply the tag at index `217` in our tags set.
The following is our final part:
```python
def get_accented_words(merged_tokens_preds, label_list):
accented_words = []
for word_raw, label_indexes in merged_tokens_preds:
# use the first label that changes word_raw
for label_index in label_indexes:
tag_name = label_list[int(label_index)]
raw, vowel = tag_name.split("-")
if raw and raw in word_raw:
word_accented = word_raw.replace(raw, vowel)
break
else:
word_accented = word_raw
accented_words.append(word_accented)
return accented_words
accented_words = get_accented_words(merged_tokens_preds, label_list)
print(accented_words)
```
Obtained:
```python
['Nhìn', 'những', 'mùa', 'thu', 'đi,', 'em', 'nghe', 'sâu', 'lên', 'trong', 'nắng.']
```
In this example, the model made 1 mistake with the word "sầu" (but predicted "sâu").
## Limitations
- This model will accept a maximum of 512 tokens, which is a limitation inherited from the base pretrained XLM-Roberta model.
- It has a higher accuracy (97%) than <a href="https://vietnameseaccent.com/" target="_blank">the HMM version</a> (91%),
but at the expense of a probably longer running time.
More info can be found <a href="https://peterhung.org/tech/insert-vietnamese-accent-transformer-model/#vs-hmm" target="_blank">here</a>.
## Live Demo
- There is a live demo of this model available <a href="https://ai.vietnameseaccent.com/" target="_blank">here</a>.
This demo is run on CPU so the speed is expected to be not as fast as when run on GPU.
- You can also use the inference API on the right side of this page (provided by HF automatically)
to see the tags (indexes) assigned to each word. |