#!/usr/bin/python3 import time import cv2 from pathlib import Path import argparse import os from rtmo_gpu import RTMO_GPU, draw_skeleton if __name__ == "__main__": # Set up argument parsing parser = argparse.ArgumentParser(description='Process the path to a video file folder.') parser.add_argument('path', type=str, help='Path to the folder containing video files (required)') parser.add_argument('model_path', type=str, help='Path to a RTMO ONNX model file (required)') parser.add_argument('--yolo_nas_pose', action='store_true', help='Use YOLO NAS Pose (flat format only) instead of RTMO Model') # Parse the command-line arguments args = parser.parse_args() onnx_model = args.model_path # 'rtmo-s_8xb32-600e_body7-640x640.onnx' # Only Tiny Model has (416,416) as input model model_input_size = (416,416) if 'rtmo-t' in onnx_model.lower() and not args.yolo_nas_pose else (640,640) body = RTMO_GPU(onnx_model=onnx_model, model_input_size=model_input_size, is_yolo_nas_pose=args.yolo_nas_pose) for mp4_path in Path(args.path).glob('*'): # Now, use the best.url, which is the direct video link for streaming cap = cv2.VideoCapture(filename=os.path.abspath(mp4_path)) frame_idx = 0 while cap.isOpened(): success, frame = cap.read() frame_idx += 1 if not success: break s = time.time() keypoints, scores = body(frame) det_time = time.time() - s print(f'det: {round(1.0 / det_time,1)} FPS') img_show = frame.copy() # if you want to use black background instead of original image, # img_show = np.zeros(img_show.shape, dtype=np.uint8) img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.3, line_width=2) img_show = cv2.resize(img_show, (788, 525)) cv2.imshow(f'{onnx_model}', img_show) cv2.waitKey(10)