Add utility to convert ONNX model in FP32/16 mixed precision
Browse files- convert_to_mixed.py +68 -0
convert_to_mixed.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import onnx
|
5 |
+
import onnxruntime as ort
|
6 |
+
from onnxconverter_common import auto_mixed_precision_model_path
|
7 |
+
import argparse
|
8 |
+
|
9 |
+
PROVIDERS=[('TensorrtExecutionProvider', {'trt_fp16_enable':True,}), 'CUDAExecutionProvider', 'CPUExecutionProvider']
|
10 |
+
RTOL=0.1
|
11 |
+
ATOL=0.1
|
12 |
+
|
13 |
+
def detect_model_input_size(model_path):
|
14 |
+
model = onnx.load(model_path)
|
15 |
+
for input_tensor in model.graph.input:
|
16 |
+
# Assuming the input node is named 'input'
|
17 |
+
if input_tensor.name == 'input':
|
18 |
+
tensor_shape = input_tensor.type.tensor_type.shape
|
19 |
+
# Extract the dimensions: (batch_size, channels, height, width)
|
20 |
+
dims = [dim.dim_value for dim in tensor_shape.dim]
|
21 |
+
# Replace dynamic batch size (-1 or 0) with 1
|
22 |
+
if dims[0] < 1:
|
23 |
+
dims[0] = 1
|
24 |
+
return tuple(dims[2:4]) # Return (height, width)
|
25 |
+
raise ValueError("Input node 'input' not found in the model")
|
26 |
+
|
27 |
+
def load_and_preprocess_image(image_path, size=(224, 224)):
|
28 |
+
image = Image.open(image_path).convert('RGB')
|
29 |
+
image = image.resize(size)
|
30 |
+
image = np.array(image).astype(np.float32) / 255.
|
31 |
+
image = np.transpose(image, (2, 0, 1))
|
32 |
+
image = np.expand_dims(image, axis=0)
|
33 |
+
return image
|
34 |
+
|
35 |
+
def infer(model_path, input_feed):
|
36 |
+
session = ort.InferenceSession(model_path, providers=PROVIDERS)
|
37 |
+
input_name = session.get_inputs()[0].name
|
38 |
+
result = session.run(None, {input_name: input_feed})
|
39 |
+
return result
|
40 |
+
|
41 |
+
def main(args):
|
42 |
+
model_input_size = detect_model_input_size(args.source_model_path)
|
43 |
+
input_feed = {'input':load_and_preprocess_image(args.test_image_path, size=model_input_size)}
|
44 |
+
|
45 |
+
auto_mixed_precision_model_path.auto_convert_mixed_precision_model_path(source_model_path=args.source_model_path,
|
46 |
+
input_feed=input_feed,
|
47 |
+
target_model_path=args.target_model_path,
|
48 |
+
customized_validate_func=None,
|
49 |
+
rtol=RTOL, atol=ATOL,
|
50 |
+
provider=PROVIDERS,
|
51 |
+
keep_io_types=True,
|
52 |
+
verbose=True)
|
53 |
+
|
54 |
+
original_result = infer(args.source_model_path, input_feed)
|
55 |
+
converted_result = infer(args.target_model_path, input_feed)
|
56 |
+
|
57 |
+
is_close = np.allclose(original_result[0], converted_result[0], rtol=RTOL, atol=ATOL)
|
58 |
+
print(f"Validation result: {'Success' if is_close else 'Failure'}")
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
parser = argparse.ArgumentParser(description="Convert an ONNX model to mixed precision format.")
|
62 |
+
parser.add_argument("source_model_path", type=str, help="Path to the source ONNX model.")
|
63 |
+
parser.add_argument("target_model_path", type=str, help="Path where the mixed precision model will be saved.")
|
64 |
+
parser.add_argument("test_image_path", type=str, help="Path to a test image for validating the model conversion.")
|
65 |
+
|
66 |
+
args = parser.parse_args()
|
67 |
+
|
68 |
+
main(args)
|