|
|
|
|
|
import time |
|
import cv2 |
|
from pathlib import Path |
|
import argparse |
|
import os |
|
from rtmo_gpu import RTMO_GPU, draw_skeleton |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
parser = argparse.ArgumentParser(description='Process the path to a video file folder.') |
|
parser.add_argument('path', type=str, help='Path to the folder containing video files (required)') |
|
parser.add_argument('model_path', type=str, help='Path to a RTMO ONNX model file (required)') |
|
parser.add_argument('--yolo_nas_pose', action='store_true', help='Use YOLO NAS Pose (flat format only) instead of RTMO Model') |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
onnx_model = args.model_path |
|
|
|
|
|
model_input_size = (416,416) if 'rtmo-t' in onnx_model.lower() and not args.yolo_nas_pose else (640,640) |
|
|
|
body = RTMO_GPU(onnx_model=onnx_model, |
|
model_input_size=model_input_size, is_yolo_nas_pose=args.yolo_nas_pose) |
|
|
|
for mp4_path in Path(args.path).glob('*'): |
|
|
|
|
|
cap = cv2.VideoCapture(filename=os.path.abspath(mp4_path)) |
|
|
|
frame_idx = 0 |
|
|
|
while cap.isOpened(): |
|
success, frame = cap.read() |
|
frame_idx += 1 |
|
|
|
if not success: |
|
break |
|
s = time.time() |
|
keypoints, scores = body(frame) |
|
det_time = time.time() - s |
|
print(f'det: {round(1.0 / det_time,1)} FPS') |
|
|
|
img_show = frame.copy() |
|
|
|
|
|
|
|
|
|
img_show = draw_skeleton(img_show, |
|
keypoints, |
|
scores, |
|
kpt_thr=0.3, |
|
line_width=2) |
|
img_show = cv2.resize(img_show, (788, 525)) |
|
cv2.imshow(f'{onnx_model}', img_show) |
|
cv2.waitKey(10) |
|
|