pesi
/

File size: 137,619 Bytes
b75f05d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

# -*- coding: UTF-8 -*-
import argparse
import logging

import numpy as np
import onnx
import sympy
from onnx import helper, numpy_helper, shape_inference
from packaging import version

assert version.parse(onnx.__version__) >= version.parse("1.8.0")

logger = logging.getLogger(__name__)


def get_attribute(node, attr_name, default_value=None):
    found = [attr for attr in node.attribute if attr.name == attr_name]
    if found:
        return helper.get_attribute_value(found[0])
    return default_value


def get_dim_from_proto(dim):
    return getattr(dim, dim.WhichOneof("value")) if type(dim.WhichOneof("value")) is str else None  # noqa: E721


def is_sequence(type_proto):
    cls_type = type_proto.WhichOneof("value")
    assert cls_type in ["tensor_type", "sequence_type"]
    return cls_type == "sequence_type"


def get_shape_from_type_proto(type_proto):
    assert not is_sequence(type_proto)
    if type_proto.tensor_type.HasField("shape"):
        return [get_dim_from_proto(d) for d in type_proto.tensor_type.shape.dim]
    else:
        return None  # note no shape is different from shape without dim (scalar)


def get_elem_type_from_type_proto(type_proto):
    if is_sequence(type_proto):
        return type_proto.sequence_type.elem_type.tensor_type.elem_type
    else:
        return type_proto.tensor_type.elem_type


def get_shape_from_value_info(vi):
    cls_type = vi.type.WhichOneof("value")
    if cls_type is None:
        return None
    if is_sequence(vi.type):
        if vi.type.sequence_type.elem_type.WhichOneof("value") == "tensor_type":
            return get_shape_from_type_proto(vi.type.sequence_type.elem_type)
        else:
            return None
    else:
        return get_shape_from_type_proto(vi.type)


def make_named_value_info(name):
    vi = onnx.ValueInfoProto()
    vi.name = name
    return vi


def get_shape_from_sympy_shape(sympy_shape):
    return [None if i is None else (int(i) if is_literal(i) else str(i)) for i in sympy_shape]


def is_literal(dim):
    return type(dim) in [int, np.int64, np.int32, sympy.Integer] or (hasattr(dim, "is_number") and dim.is_number)


def handle_negative_axis(axis, rank):
    assert axis < rank and axis >= -rank
    return axis if axis >= 0 else rank + axis


def get_opset(mp, domain=None):
    domain = domain or ["", "onnx", "ai.onnx"]
    if type(domain) != list:  # noqa: E721
        domain = [domain]
    for opset in mp.opset_import:
        if opset.domain in domain:
            return opset.version

    return None


def as_scalar(x):
    if type(x) == list:  # noqa: E721
        assert len(x) == 1
        return x[0]
    elif type(x) == np.ndarray:
        return x.item()
    else:
        return x


def as_list(x, keep_none):
    if type(x) == list:  # noqa: E721
        return x
    elif type(x) == np.ndarray:
        return list(x)
    elif keep_none and x is None:
        return None
    else:
        return [x]


def sympy_reduce_product(x):
    if type(x) == list:  # noqa: E721
        value = sympy.Integer(1)
        for v in x:
            value = value * v
    else:
        value = x
    return value


class SymbolicShapeInference:
    def __init__(self, int_max, auto_merge, guess_output_rank, verbose, prefix=""):
        self.dispatcher_ = {
            "Add": self._infer_symbolic_compute_ops,
            "ArrayFeatureExtractor": self._infer_ArrayFeatureExtractor,
            "AveragePool": self._infer_Pool,
            "BatchNormalization": self._infer_BatchNormalization,
            "Cast": self._infer_Cast,
            "CategoryMapper": self._infer_CategoryMapper,
            "Compress": self._infer_Compress,
            "Concat": self._infer_Concat,
            "ConcatFromSequence": self._infer_ConcatFromSequence,
            "Constant": self._infer_Constant,
            "ConstantOfShape": self._infer_ConstantOfShape,
            "Conv": self._infer_Conv,
            "CumSum": self._pass_on_shape_and_type,
            "Div": self._infer_symbolic_compute_ops,
            "Einsum": self._infer_Einsum,
            "Expand": self._infer_Expand,
            "Equal": self._infer_symbolic_compute_ops,
            "Floor": self._infer_symbolic_compute_ops,
            "Gather": self._infer_Gather,
            "GatherElements": self._infer_GatherElements,
            "GatherND": self._infer_GatherND,
            "Identity": self._pass_on_shape_and_type,
            "AllReduce": self._pass_on_shape_and_type,
            "If": self._infer_If,
            "Loop": self._infer_Loop,
            "MatMul": self._infer_MatMul,
            "MatMulInteger16": self._infer_MatMulInteger,
            "MaxPool": self._infer_Pool,
            "Max": self._infer_symbolic_compute_ops,
            "MemcpyFromHost": self._pass_on_shape_and_type,
            "MemcpyToHost": self._pass_on_shape_and_type,
            "Min": self._infer_symbolic_compute_ops,
            "MoE": self._pass_on_shape_and_type,
            "Mul": self._infer_symbolic_compute_ops,
            "NonMaxSuppression": self._infer_NonMaxSuppression,
            "NonZero": self._infer_NonZero,
            "OneHot": self._infer_OneHot,
            "Pad": self._infer_Pad,
            "Range": self._infer_Range,
            "Reciprocal": self._pass_on_shape_and_type,
            "ReduceSum": self._infer_ReduceSum,
            "ReduceProd": self._infer_ReduceProd,
            "Reshape": self._infer_Reshape,
            "Resize": self._infer_Resize,
            "Round": self._pass_on_shape_and_type,
            "Scan": self._infer_Scan,
            "ScatterElements": self._infer_ScatterElements,
            "SequenceAt": self._infer_SequenceAt,
            "SequenceInsert": self._infer_SequenceInsert,
            "Shape": self._infer_Shape,
            "Size": self._infer_Size,
            "Slice": self._infer_Slice,
            "SoftmaxCrossEntropyLoss": self._infer_SoftmaxCrossEntropyLoss,
            "SoftmaxCrossEntropyLossInternal": self._infer_SoftmaxCrossEntropyLoss,
            "NegativeLogLikelihoodLossInternal": self._infer_SoftmaxCrossEntropyLoss,
            "Split": self._infer_Split,
            "SplitToSequence": self._infer_SplitToSequence,
            "Squeeze": self._infer_Squeeze,
            "Sub": self._infer_symbolic_compute_ops,
            "Tile": self._infer_Tile,
            "TopK": self._infer_TopK,
            "Transpose": self._infer_Transpose,
            "Unsqueeze": self._infer_Unsqueeze,
            "Where": self._infer_symbolic_compute_ops,
            "ZipMap": self._infer_ZipMap,
            "Neg": self._infer_symbolic_compute_ops,
            # contrib ops:
            "Attention": self._infer_Attention,
            "BiasAdd": self._infer_BiasAdd,
            "BiasGelu": self._infer_BiasGelu,
            "BiasSplitGelu": self._infer_BiasSplitGelu,
            "DecoderMaskedMultiHeadAttention": self._infer_DecoderMaskedMultiHeadAttention,
            "DequantizeLinear": self._infer_DequantizeLinear,
            "EmbedLayerNormalization": self._infer_EmbedLayerNormalization,
            "FastGelu": self._infer_FastGelu,
            "GatedRelativePositionBias": self._infer_GatedRelativePositionBias,
            "Gelu": self._infer_Gelu,
            "GemmFastGelu": self._infer_GemmFastGelu,
            "GemmFloat8": self._infer_GemmFloat8,
            "GroupNorm": self._infer_GroupNorm,
            "GroupQueryAttention": self._infer_GroupQueryAttention,
            "SkipGroupNorm": self._infer_SkipGroupNorm,
            "LayerNormalization": self._infer_LayerNormalization,
            "LongformerAttention": self._infer_LongformerAttention,
            "MultiHeadAttention": self._infer_MultiHeadAttention,
            "NhwcConv": self._infer_NhwcConv,
            "PackedAttention": self._infer_PackedAttention,
            "PackedMultiHeadAttention": self._infer_PackedMultiHeadAttention,
            "PagedAttention": self._infer_PagedAttention,
            "PythonOp": self._infer_PythonOp,
            "QuantizeLinear": self._infer_QuantizeLinear,
            "QuickGelu": self._infer_FastGelu,
            "RelativePositionBias": self._infer_RelativePositionBias,
            "RemovePadding": self._infer_RemovePadding,
            "RestorePadding": self._infer_RestorePadding,
            "RotaryEmbedding": self._infer_RotaryEmbedding,
            "SimplifiedLayerNormalization": self._infer_LayerNormalization,
            "SkipLayerNormalization": self._infer_SkipLayerNormalization,
            "SkipSimplifiedLayerNormalization": self._infer_SkipLayerNormalization,
        }
        self.aten_op_dispatcher_ = {
            "embedding": self._infer_Gather,
            "bitwise_or": self._infer_aten_bitwise_or,
            "diagonal": self._infer_aten_diagonal,
            "max_pool2d_with_indices": self._infer_aten_pool2d,
            "max": self._infer_aten_minmax,
            "min": self._infer_aten_minmax,
            "multinomial": self._infer_aten_multinomial,
            "unfold": self._infer_aten_unfold,
            "argmax": self._infer_aten_argmax,
            "avg_pool2d": self._infer_aten_pool2d,
            "_adaptive_avg_pool2d": self._infer_aten_pool2d,
            "numpy_T": self._infer_Transpose,
            "native_group_norm": self._infer_aten_group_norm,
            "upsample_nearest1d": self._infer_aten_upsample,
            "upsample_nearest2d": self._infer_aten_upsample,
            "upsample_nearest3d": self._infer_aten_upsample,
            "upsample_bicubic2d": self._infer_aten_upsample,
        }
        self.run_ = True
        self.suggested_merge_ = {}
        self.symbolic_dims_ = {}
        self.input_symbols_ = {}
        self.auto_merge_ = auto_merge
        self.guess_output_rank_ = guess_output_rank
        self.verbose_ = verbose
        self.int_max_ = int_max
        self.subgraph_id_ = 0
        self.prefix_ = prefix

    def _add_suggested_merge(self, symbols, apply=False):
        assert all([(type(s) == str and s in self.symbolic_dims_) or is_literal(s) for s in symbols])  # noqa: E721
        symbols = set(symbols)
        for k, v in self.suggested_merge_.items():
            if k in symbols:
                symbols.remove(k)
                symbols.add(v)
        map_to = None
        # if there is literal, map to it first
        for s in symbols:
            if is_literal(s):
                map_to = s
                break
        # when no literals, map to input symbolic dims, then existing symbolic dims
        if map_to is None:
            for s in symbols:
                if s in self.input_symbols_:
                    map_to = s
                    break
        if map_to is None:
            for s in symbols:
                if type(self.symbolic_dims_[s]) == sympy.Symbol:
                    map_to = s
                    break
        # when nothing to map to, use the shorter one
        if map_to is None:
            if self.verbose_ > 0:
                logger.warning("Potential unsafe merge between symbolic expressions: ({})".format(",".join(symbols)))
            symbols_list = list(symbols)
            lens = [len(s) for s in symbols_list]
            map_to = symbols_list[lens.index(min(lens))]
            symbols.remove(map_to)

        for s in symbols:
            if s == map_to:
                continue
            if is_literal(map_to) and is_literal(s):
                assert int(map_to) == int(s)
            self.suggested_merge_[s] = int(map_to) if is_literal(map_to) else map_to
            for k, v in self.suggested_merge_.items():
                if v == s:
                    self.suggested_merge_[k] = map_to
        if apply and self.auto_merge_:
            self._apply_suggested_merge()

    def _apply_suggested_merge(self, graph_input_only=False):
        if not self.suggested_merge_:
            return
        for i in list(self.out_mp_.graph.input) + ([] if graph_input_only else list(self.out_mp_.graph.value_info)):
            for d in i.type.tensor_type.shape.dim:
                if d.dim_param in self.suggested_merge_:
                    v = self.suggested_merge_[d.dim_param]
                    if is_literal(v):
                        d.dim_value = int(v)
                    else:
                        d.dim_param = v

    def _preprocess(self, in_mp):
        self.out_mp_ = onnx.ModelProto()
        self.out_mp_.CopyFrom(in_mp)
        self.graph_inputs_ = {i.name: i for i in list(self.out_mp_.graph.input)}
        self.initializers_ = {i.name: i for i in self.out_mp_.graph.initializer}
        self.known_vi_ = {i.name: i for i in list(self.out_mp_.graph.input)}
        self.known_vi_.update(
            {
                i.name: helper.make_tensor_value_info(i.name, i.data_type, list(i.dims))
                for i in self.out_mp_.graph.initializer
            }
        )

    def _merge_symbols(self, dims):
        if not all([type(d) == str for d in dims]):  # noqa: E721
            if self.auto_merge_:
                unique_dims = list(set(dims))
                is_int = [is_literal(d) for d in unique_dims]
                assert sum(is_int) <= 1  # if there are more than 1 unique ints, something is wrong
                if sum(is_int) == 1:
                    int_dim = is_int.index(1)
                    if self.verbose_ > 0:
                        logger.debug(
                            "dim {} has been merged with value {}".format(
                                unique_dims[:int_dim] + unique_dims[int_dim + 1 :],
                                unique_dims[int_dim],
                            )
                        )
                    self._check_merged_dims(unique_dims, allow_broadcast=False)
                    return unique_dims[int_dim]
                else:
                    if self.verbose_ > 0:
                        logger.debug(f"dim {unique_dims[1:]} has been merged with dim {unique_dims[0]}")
                    return dims[0]
            else:
                return None
        if all([d == dims[0] for d in dims]):
            return dims[0]
        merged = [self.suggested_merge_.get(d, d) for d in dims]
        if all([d == merged[0] for d in merged]):
            assert merged[0] in self.symbolic_dims_
            return merged[0]
        else:
            return None

    # broadcast from right to left, and merge symbolic dims if needed
    def _broadcast_shapes(self, shape1, shape2):
        new_shape = []
        rank1 = len(shape1)
        rank2 = len(shape2)
        new_rank = max(rank1, rank2)
        for i in range(new_rank):
            dim1 = shape1[rank1 - 1 - i] if i < rank1 else 1
            dim2 = shape2[rank2 - 1 - i] if i < rank2 else 1
            if dim1 == 1 or dim1 == dim2:
                new_dim = dim2
            elif dim2 == 1:
                new_dim = dim1
            else:
                new_dim = self._merge_symbols([dim1, dim2])
                if not new_dim:
                    # warning about unsupported broadcast when not auto merge
                    # note that auto merge has the risk of incorrectly merge symbols while one of them being 1
                    # for example, 'a' = 1, 'b' = 5 at runtime is valid broadcasting, but with auto merge 'a' == 'b'
                    if self.auto_merge_:
                        self._add_suggested_merge([dim1, dim2], apply=True)
                    else:
                        logger.warning("unsupported broadcast between " + str(dim1) + " " + str(dim2))
            new_shape = [new_dim, *new_shape]
        return new_shape

    def _get_shape(self, node, idx):
        name = node.input[idx]
        if name in self.known_vi_:
            vi = self.known_vi_[name]
            return get_shape_from_value_info(vi)
        else:
            assert name in self.initializers_
            return list(self.initializers_[name].dims)

    def _try_get_shape(self, node, idx):
        if idx > len(node.input) - 1:
            return None
        name = node.input[idx]
        if name in self.known_vi_:
            vi = self.known_vi_[name]
            return get_shape_from_value_info(vi)
        if name in self.initializers_:
            return list(self.initializers_[name].dims)
        return None

    def _get_shape_rank(self, node, idx):
        return len(self._get_shape(node, idx))

    def _get_sympy_shape(self, node, idx):
        sympy_shape = []
        for d in self._get_shape(node, idx):
            if type(d) == str:  # noqa: E721
                sympy_shape.append(
                    self.symbolic_dims_[d]
                    if d in self.symbolic_dims_
                    else sympy.Symbol(d, integer=True, nonnegative=True)
                )
            else:
                assert None is not d
                sympy_shape.append(d)
        return sympy_shape

    def _get_value(self, node, idx):
        name = node.input[idx]
        assert name in self.sympy_data_ or name in self.initializers_
        return self.sympy_data_[name] if name in self.sympy_data_ else numpy_helper.to_array(self.initializers_[name])

    def _try_get_value(self, node, idx):
        if idx >= len(node.input):
            return None
        name = node.input[idx]
        if name in self.sympy_data_ or name in self.initializers_:
            return self._get_value(node, idx)
        return None

    def _update_computed_dims(self, new_sympy_shape):
        for i, new_dim in enumerate(new_sympy_shape):
            if not is_literal(new_dim) and type(new_dim) != str:  # noqa: E721
                str_dim = str(new_dim)
                if str_dim in self.suggested_merge_:
                    if is_literal(self.suggested_merge_[str_dim]):
                        continue  # no need to create dim for literals
                    new_sympy_shape[i] = self.symbolic_dims_[self.suggested_merge_[str_dim]]
                else:
                    # add new_dim if it's a computational expression
                    if str(new_dim) not in self.symbolic_dims_:
                        self.symbolic_dims_[str(new_dim)] = new_dim

    def _onnx_infer_single_node(self, node):
        # skip onnx shape inference for some ops, as they are handled in _infer_*
        skip_infer = node.op_type in [
            "If",
            "Loop",
            "Scan",
            "SplitToSequence",
            "ZipMap",  # contrib ops
            "Attention",
            "BiasGelu",
            "EmbedLayerNormalization",
            "FastGelu",
            "Gelu",
            "GemmFastGelu",
            "LayerNormalization",
            "LongformerAttention",
            "DequantizeLinear",
            "QuantizeLinear",
            "RelativePositionBias",
            "RemovePadding",
            "RestorePadding",
            "SimplifiedLayerNormalization",
            "SkipLayerNormalization",
            "SkipSimplifiedLayerNormalization",
            "PackedAttention",
            "PagedAttention",
            "PythonOp",
            "MultiHeadAttention",
            "GroupNorm",
            "GroupQueryAttention",
            "SkipGroupNorm",
            "BiasSplitGelu",
            "BiasAdd",
            "NhwcConv",
            "QuickGelu",
            "RotaryEmbedding",
        ]

        if not skip_infer:
            # Only pass initializers that satisfy the following condition:
            # (1) Operator need value of some input for shape inference.
            #     For example, Unsqueeze in opset 13 uses the axes input to calculate shape of output.
            # (2) opset version >= 9. In older version, initializer is required in graph input by onnx spec.
            # (3) The initializer is not in graph input. The means the node input is "constant" in inference.
            initializers = []
            if (get_opset(self.out_mp_) >= 9) and node.op_type in ["Unsqueeze"]:
                initializers = [
                    self.initializers_[name]
                    for name in node.input
                    if (name in self.initializers_ and name not in self.graph_inputs_)
                ]

            # run single node inference with self.known_vi_ shapes
            tmp_graph = helper.make_graph(
                [node],
                "tmp",
                [self.known_vi_[i] for i in node.input if i],
                [make_named_value_info(i) for i in node.output],
                initializers,
            )

            self.tmp_mp_.graph.CopyFrom(tmp_graph)

            self.tmp_mp_ = shape_inference.infer_shapes(self.tmp_mp_)

        for i_o in range(len(node.output)):
            o = node.output[i_o]
            if o:  # skip optional output
                vi = self.out_mp_.graph.value_info.add()
                if not skip_infer:
                    vi.CopyFrom(self.tmp_mp_.graph.output[i_o])
                else:
                    vi.name = o
                self.known_vi_[o] = vi

    def _onnx_infer_subgraph(self, node, subgraph, use_node_input=True, inc_subgraph_id=True):
        if self.verbose_ > 2:
            logger.debug(f"Inferencing subgraph of node {node.name} with output({node.output[0]}...): {node.op_type}")
        # node inputs are not passed directly to the subgraph
        # it's up to the node dispatcher to prepare subgraph input
        # for example, with Scan/Loop, subgraph input shape would be trimmed from node input shape
        # besides, inputs in subgraph could shadow implicit inputs
        subgraph_inputs = {i.name for i in list(subgraph.initializer) + list(subgraph.input)}
        subgraph_implicit_input = {name for name in self.known_vi_ if name not in subgraph_inputs}
        tmp_graph = helper.make_graph(
            list(subgraph.node),
            "tmp",
            list(subgraph.input) + [self.known_vi_[i] for i in subgraph_implicit_input],
            [make_named_value_info(i.name) for i in subgraph.output],
        )
        tmp_graph.initializer.extend([i for i in self.out_mp_.graph.initializer if i.name in subgraph_implicit_input])
        tmp_graph.initializer.extend(subgraph.initializer)
        self.tmp_mp_.graph.CopyFrom(tmp_graph)

        symbolic_shape_inference = SymbolicShapeInference(
            self.int_max_,
            self.auto_merge_,
            self.guess_output_rank_,
            self.verbose_,
            prefix=self.prefix_ + "_" + str(self.subgraph_id_),
        )
        if inc_subgraph_id:
            self.subgraph_id_ += 1

        symbolic_shape_inference._preprocess(self.tmp_mp_)
        symbolic_shape_inference.suggested_merge_ = self.suggested_merge_.copy()
        while symbolic_shape_inference.run_:
            symbolic_shape_inference._infer_impl(self.sympy_data_.copy())
        symbolic_shape_inference._update_output_from_vi()
        if use_node_input:
            # if subgraph uses node input, it needs to update to merged dims
            subgraph.ClearField("input")
            subgraph.input.extend(symbolic_shape_inference.out_mp_.graph.input[: len(node.input)])
        subgraph.ClearField("output")
        subgraph.output.extend(symbolic_shape_inference.out_mp_.graph.output)
        subgraph.ClearField("value_info")
        subgraph.value_info.extend(symbolic_shape_inference.out_mp_.graph.value_info)
        subgraph.ClearField("node")
        subgraph.node.extend(symbolic_shape_inference.out_mp_.graph.node)
        # for new symbolic dims from subgraph output, add to main graph symbolic dims
        subgraph_shapes = [get_shape_from_value_info(o) for o in symbolic_shape_inference.out_mp_.graph.output]
        subgraph_new_symbolic_dims = {
            d for s in subgraph_shapes if s for d in s if type(d) == str and d not in self.symbolic_dims_  # noqa: E721
        }
        new_dims = {}
        for d in subgraph_new_symbolic_dims:
            assert d in symbolic_shape_inference.symbolic_dims_
            new_dims[d] = symbolic_shape_inference.symbolic_dims_[d]
        self.symbolic_dims_.update(new_dims)
        return symbolic_shape_inference

    def _get_int_or_float_values(self, node, broadcast=False, allow_float_values=False):
        def int_or_float(value, allow_float_values):
            # If casting into int has precision loss: keep float output
            if allow_float_values and value % 1 != 0:
                return value
            return int(value)

        values = [self._try_get_value(node, i) for i in range(len(node.input))]
        if all([v is not None for v in values]):
            # some shape compute is in floating point, cast to int for sympy
            for i, v in enumerate(values):
                if type(v) != np.ndarray:
                    continue
                if len(v.shape) > 1:
                    new_v = None  # ignore value for rank > 1
                elif len(v.shape) == 0:
                    new_v = int_or_float(v.item(), allow_float_values)
                else:
                    assert len(v.shape) == 1
                    new_v = [int_or_float(vv, allow_float_values) for vv in v]
                values[i] = new_v
        values_len = [len(v) if isinstance(v, list) else 0 for v in values]
        max_len = max(values_len)
        if max_len >= 1 and broadcast:
            # broadcast
            for i, v in enumerate(values):
                if v is None:
                    continue  # don't broadcast if value is unknown
                if isinstance(v, list):
                    if len(v) < max_len:
                        values[i] = v * max_len
                    else:
                        assert len(v) == max_len
                else:
                    values[i] = [v] * max_len
        return values

    def _compute_on_sympy_data(self, node, op_func):
        assert len(node.output) == 1

        # Before mul & div operations
        # cast inputs into interger might lose decimal part and reduce precision
        # keep them as float, finish the operation, then cast the result into integer
        if node.op_type in ["Mul", "Div"]:
            values = self._get_int_or_float_values(node, broadcast=True, allow_float_values=True)
        else:
            values = self._get_int_or_float_values(node, broadcast=True)

        if all([v is not None for v in values]):
            is_list = [isinstance(v, list) for v in values]
            as_list = any(is_list)
            if as_list:
                self.sympy_data_[node.output[0]] = [op_func(vs) for vs in zip(*values)]
            else:
                self.sympy_data_[node.output[0]] = op_func(values)

    def _pass_on_sympy_data(self, node):
        assert len(node.input) == 1 or node.op_type in [
            "Reshape",
            "Unsqueeze",
            "Squeeze",
        ]
        self._compute_on_sympy_data(node, lambda x: x[0])

    def _pass_on_shape_and_type(self, node):
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                get_elem_type_from_type_proto(self.known_vi_[node.input[0]].type),
                self._get_shape(node, 0),
            )
        )

    def _new_symbolic_dim(self, prefix, dim):
        new_dim = f"{prefix}_d{dim}"
        if new_dim in self.suggested_merge_:
            v = self.suggested_merge_[new_dim]
            new_symbolic_dim = sympy.Integer(int(v)) if is_literal(v) else v
        else:
            new_symbolic_dim = sympy.Symbol(new_dim, integer=True, nonnegative=True)
            self.symbolic_dims_[new_dim] = new_symbolic_dim
        return new_symbolic_dim

    def _new_symbolic_dim_from_output(self, node, out_idx=0, dim=0):
        return self._new_symbolic_dim(
            "{}{}_{}_o{}_".format(
                node.op_type,
                self.prefix_,
                list(self.out_mp_.graph.node).index(node),
                out_idx,
            ),
            dim,
        )

    def _new_symbolic_shape(self, rank, node, out_idx=0):
        return [self._new_symbolic_dim_from_output(node, out_idx, i) for i in range(rank)]

    def _compute_conv_pool_shape(self, node, channels_last=False):
        sympy_shape = self._get_sympy_shape(node, 0)
        if len(node.input) > 1:
            W_shape = self._get_sympy_shape(node, 1)  # noqa: N806
            rank = len(W_shape) - 2  # number of spatial axes
            kernel_shape = W_shape[-rank - 1 : -1] if channels_last else W_shape[-rank:]
            sympy_shape[3 if channels_last else 1] = W_shape[0]
        else:
            W_shape = None  # noqa: N806
            kernel_shape = get_attribute(node, "kernel_shape")
            rank = len(kernel_shape)

        assert len(sympy_shape) == rank + 2

        # only need to symbolic shape inference if input has symbolic dims in spatial axes
        spatial_shape = sympy_shape[-rank - 1 : -1] if channels_last else sympy_shape[-rank:]
        is_symbolic_dims = [not is_literal(i) for i in spatial_shape]

        if not any(is_symbolic_dims):
            shape = get_shape_from_value_info(self.known_vi_[node.output[0]])
            if len(shape) > 0:
                assert len(sympy_shape) == len(shape)
                if channels_last:
                    sympy_shape[-rank - 1 : -1] = [sympy.Integer(d) for d in shape[-rank - 1 : -1]]
                else:
                    sympy_shape[-rank:] = [sympy.Integer(d) for d in shape[-rank:]]
                return sympy_shape

        dilations = get_attribute(node, "dilations", [1] * rank)
        strides = get_attribute(node, "strides", [1] * rank)
        effective_kernel_shape = [(k - 1) * d + 1 for k, d in zip(kernel_shape, dilations)]
        pads = get_attribute(node, "pads")
        if pads is None:
            pads = [0] * (2 * rank)
            auto_pad = get_attribute(node, "auto_pad", b"NOTSET").decode("utf-8")
            if auto_pad != "VALID" and auto_pad != "NOTSET":
                try:
                    residual = [sympy.Mod(d, s) for d, s in zip(sympy_shape[-rank:], strides)]
                    total_pads = [
                        max(0, (k - s) if r == 0 else (k - r))
                        for k, s, r in zip(effective_kernel_shape, strides, residual)
                    ]
                except TypeError:  # sympy may throw TypeError: cannot determine truth value of Relational
                    total_pads = [
                        max(0, (k - s)) for k, s in zip(effective_kernel_shape, strides)
                    ]  # assuming no residual if sympy throws error
            elif auto_pad == "VALID":
                total_pads = []
            else:
                total_pads = [0] * rank
        else:
            assert len(pads) == 2 * rank
            total_pads = [p1 + p2 for p1, p2 in zip(pads[:rank], pads[rank:])]

        ceil_mode = get_attribute(node, "ceil_mode", 0)
        for i in range(rank):
            effective_input_size = sympy_shape[-rank + i + (-1 if channels_last else 0)]
            if len(total_pads) > 0:
                effective_input_size = effective_input_size + total_pads[i]
            if ceil_mode:
                strided_kernel_positions = sympy.ceiling(
                    (effective_input_size - effective_kernel_shape[i]) / strides[i]
                )
            else:
                strided_kernel_positions = (effective_input_size - effective_kernel_shape[i]) // strides[i]
            sympy_shape[-rank + i + (-1 if channels_last else 0)] = strided_kernel_positions + 1
        return sympy_shape

    def _check_merged_dims(self, dims, allow_broadcast=True):
        if allow_broadcast:
            dims = [d for d in dims if not (is_literal(d) and int(d) <= 1)]
        if not all([d == dims[0] for d in dims]):
            self._add_suggested_merge(dims, apply=True)

    def _compute_matmul_shape(self, node, output_dtype=None):
        lhs_shape = self._get_shape(node, 0)
        rhs_shape = self._get_shape(node, 1)
        lhs_rank = len(lhs_shape)
        rhs_rank = len(rhs_shape)
        lhs_reduce_dim = 0
        rhs_reduce_dim = 0
        assert lhs_rank > 0 and rhs_rank > 0
        if lhs_rank == 1 and rhs_rank == 1:
            new_shape = []
        elif lhs_rank == 1:
            rhs_reduce_dim = -2
            new_shape = rhs_shape[:rhs_reduce_dim] + [rhs_shape[-1]]
        elif rhs_rank == 1:
            lhs_reduce_dim = -1
            new_shape = lhs_shape[:lhs_reduce_dim]
        else:
            lhs_reduce_dim = -1
            rhs_reduce_dim = -2
            new_shape = [*self._broadcast_shapes(lhs_shape[:-2], rhs_shape[:-2]), lhs_shape[-2], rhs_shape[-1]]
        # merge reduce dim
        self._check_merged_dims(
            [lhs_shape[lhs_reduce_dim], rhs_shape[rhs_reduce_dim]],
            allow_broadcast=False,
        )
        if output_dtype is None:
            # infer output_dtype from input type when not specified
            output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))

    def _fuse_tensor_type(self, node, out_idx, dst_type, src_type):
        """
        update dst_tensor_type to be compatible with src_tensor_type when dimension mismatches
        """
        dst_tensor_type = (
            dst_type.sequence_type.elem_type.tensor_type if is_sequence(dst_type) else dst_type.tensor_type
        )
        src_tensor_type = (
            src_type.sequence_type.elem_type.tensor_type if is_sequence(src_type) else src_type.tensor_type
        )
        if dst_tensor_type.elem_type != src_tensor_type.elem_type:
            node_id = node.name if node.name else node.op_type
            raise ValueError(
                f"For node {node_id}, dst_tensor_type.elem_type != src_tensor_type.elem_type: "
                f"{onnx.onnx_pb.TensorProto.DataType.Name(dst_tensor_type.elem_type)} vs "
                f"{onnx.onnx_pb.TensorProto.DataType.Name(src_tensor_type.elem_type)}"
            )
        if dst_tensor_type.HasField("shape"):
            for di, ds in enumerate(zip(dst_tensor_type.shape.dim, src_tensor_type.shape.dim)):
                if ds[0] != ds[1]:
                    # create a new symbolic dimension for node/out_idx/mismatch dim id in dst_tensor_type for tensor_type
                    # for sequence_type, clear the dimension
                    new_dim = onnx.TensorShapeProto.Dimension()
                    if not is_sequence(dst_type):
                        new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, out_idx, di))
                    dst_tensor_type.shape.dim[di].CopyFrom(new_dim)
        else:
            dst_tensor_type.CopyFrom(src_tensor_type)

    def _infer_ArrayFeatureExtractor(self, node):  # noqa: N802
        data_shape = self._get_shape(node, 0)
        indices_shape = self._get_shape(node, 1)
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                data_shape[:-1] + indices_shape,
            )
        )

    def _infer_symbolic_compute_ops(self, node):
        funcs = {
            "Add": lambda l: l[0] + l[1],  # noqa: E741
            "Div": lambda l: (  # noqa: E741
                int(l[0] // l[1]) if isinstance(l[0] // l[1], float) else l[0] // l[1]
            ),  # integer div in sympy
            "Equal": lambda l: l[0] == l[1],  # noqa: E741
            "Floor": lambda l: sympy.floor(l[0]),  # noqa: E741
            "Max": lambda l: (  # noqa: E741
                l[1]
                if is_literal(l[0]) and int(l[0]) < -self.int_max_
                else (l[0] if is_literal(l[1]) and int(l[1]) < -self.int_max_ else sympy.Max(l[0], l[1]))
            ),
            "Min": lambda l: (  # noqa: E741
                l[1]
                if is_literal(l[0]) and int(l[0]) > self.int_max_
                else (l[0] if is_literal(l[1]) and int(l[1]) > self.int_max_ else sympy.Min(l[0], l[1]))
            ),
            "Mul": lambda l: int(l[0] * l[1]) if isinstance(l[0] * l[1], float) else l[0] * l[1],  # noqa: E741
            "Sub": lambda l: l[0] - l[1],  # noqa: E741
            "Where": lambda l: l[1] if l[0] else l[2],  # noqa: E741
            "Neg": lambda l: -l[0],  # noqa: E741
        }
        assert node.op_type in funcs
        self._compute_on_sympy_data(node, funcs[node.op_type])

    def _infer_Cast(self, node):  # noqa: N802
        self._pass_on_sympy_data(node)

    def _infer_CategoryMapper(self, node):  # noqa: N802
        input_type = self.known_vi_[node.input[0]].type.tensor_type.elem_type
        if input_type == onnx.TensorProto.STRING:
            output_type = onnx.TensorProto.INT64
        else:
            output_type = onnx.TensorProto.STRING
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_type, self._get_shape(node, 0)))

    def _infer_Compress(self, node):  # noqa: N802
        input_shape = self._get_shape(node, 0)
        # create a new symbolic dimension for Compress output
        compress_len = str(self._new_symbolic_dim_from_output(node))
        axis = get_attribute(node, "axis")
        if axis is None:
            # when axis is not specified, input is flattened before compress so output is 1D
            output_shape = [compress_len]
        else:
            output_shape = input_shape
            output_shape[handle_negative_axis(axis, len(input_shape))] = compress_len
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                output_shape,
            )
        )

    def _infer_Concat(self, node):  # noqa: N802
        if any([i in self.sympy_data_ or i in self.initializers_ for i in node.input]):
            values = self._get_int_or_float_values(node)
            if all([v is not None for v in values]):
                assert get_attribute(node, "axis") == 0
                self.sympy_data_[node.output[0]] = []
                for i in range(len(node.input)):
                    value = values[i]
                    if isinstance(value, list):
                        self.sympy_data_[node.output[0]].extend(value)
                    else:
                        self.sympy_data_[node.output[0]].append(value)

        sympy_shape = self._get_sympy_shape(node, 0)
        axis = handle_negative_axis(get_attribute(node, "axis"), len(sympy_shape))
        for i_idx in range(1, len(node.input)):
            input_shape = self._get_sympy_shape(node, i_idx)
            if input_shape:
                sympy_shape[axis] = sympy_shape[axis] + input_shape[axis]
        self._update_computed_dims(sympy_shape)
        # merge symbolic dims for non-concat axes
        for d in range(len(sympy_shape)):
            if d == axis:
                continue
            dims = [self._get_shape(node, i_idx)[d] for i_idx in range(len(node.input)) if self._get_shape(node, i_idx)]
            if all([d == dims[0] for d in dims]):
                continue
            merged = self._merge_symbols(dims)
            if type(merged) == str:  # noqa: E721
                sympy_shape[d] = self.symbolic_dims_[merged] if merged else None
            else:
                sympy_shape[d] = merged
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                get_shape_from_sympy_shape(sympy_shape),
            )
        )

    def _infer_ConcatFromSequence(self, node):  # noqa: N802
        seq_shape = self._get_shape(node, 0)
        new_axis = 1 if get_attribute(node, "new_axis") else 0
        axis = handle_negative_axis(get_attribute(node, "axis"), len(seq_shape) + new_axis)
        concat_dim = str(self._new_symbolic_dim_from_output(node, 0, axis))
        new_shape = seq_shape
        if new_axis:
            new_shape = seq_shape[:axis] + [concat_dim] + seq_shape[axis:]
        else:
            new_shape[axis] = concat_dim
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.sequence_type.elem_type.tensor_type.elem_type,
                new_shape,
            )
        )

    def _infer_Constant(self, node):  # noqa: N802
        t = get_attribute(node, "value")
        self.sympy_data_[node.output[0]] = numpy_helper.to_array(t)

    def _infer_ConstantOfShape(self, node):  # noqa: N802
        sympy_shape = self._get_int_or_float_values(node)[0]
        vi = self.known_vi_[node.output[0]]
        if sympy_shape is not None:
            if type(sympy_shape) != list:  # noqa: E721
                sympy_shape = [sympy_shape]
            self._update_computed_dims(sympy_shape)
            # update sympy data if output type is int, and shape is known
            if vi.type.tensor_type.elem_type == onnx.TensorProto.INT64 and all([is_literal(x) for x in sympy_shape]):
                self.sympy_data_[node.output[0]] = np.ones(
                    [int(x) for x in sympy_shape], dtype=np.int64
                ) * numpy_helper.to_array(get_attribute(node, "value", 0))
        else:
            # create new dynamic shape
            # note input0 is a 1D vector of shape, the new symbolic shape has the rank of the shape vector length
            sympy_shape = self._new_symbolic_shape(self._get_shape(node, 0)[0], node)

        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                vi.type.tensor_type.elem_type,
                get_shape_from_sympy_shape(sympy_shape),
            )
        )

    def _infer_Conv(self, node):  # noqa: N802
        sympy_shape = self._compute_conv_pool_shape(node)
        self._update_computed_dims(sympy_shape)
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                vi.type.tensor_type.elem_type,
                get_shape_from_sympy_shape(sympy_shape),
            )
        )

    def _infer_NhwcConv(self, node):  # noqa: N802
        sympy_shape = self._compute_conv_pool_shape(node, channels_last=True)
        self._update_computed_dims(sympy_shape)
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                get_shape_from_sympy_shape(sympy_shape),
            )
        )

    def _infer_DequantizeLinear(self, node):  # noqa: N802
        # Get the output data type from the scale input (index 1, required).
        output_dtype = self.known_vi_[node.input[1]].type.tensor_type.elem_type

        # Get the output shape from the first input.
        output_shape = self._get_shape(node, 0)

        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))

    def _infer_QuantizeLinear(self, node):  # noqa: N802
        # Get the output data type from the zero-point input (index 2, optional).
        # Otherwise, default to uint8
        output_dtype = onnx.TensorProto.UINT8
        if len(node.input) > 2 and node.input[2]:
            output_dtype = self.known_vi_[node.input[2]].type.tensor_type.elem_type

        # Get the output shape from the first input.
        output_shape = self._get_shape(node, 0)

        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))

    def _infer_Einsum(self, node):  # noqa: N802
        # ref:https://github.com/onnx/onnx/blob/623dfaa0151b2e4ce49779c3ec31cbd78c592b80/onnx/defs/math/defs.cc#L3275
        equation = get_attribute(node, "equation")
        equation = equation.replace(b" ", b"")
        mid_index = equation.find(b"->")
        left_equation = equation[:mid_index] if mid_index != -1 else equation

        num_operands = 0
        num_ellipsis = 0
        num_ellipsis_indices = 0

        letter_to_dim = {}

        terms = left_equation.split(b",")
        for term in terms:
            ellipsis_index = term.find(b"...")
            shape = self._get_shape(node, num_operands)
            rank = len(shape)
            if ellipsis_index != -1:
                if num_ellipsis == 0:
                    num_ellipsis_indices = rank - len(term) + 3
                num_ellipsis = num_ellipsis + 1
            for i in range(1, rank + 1):
                letter = term[-i]
                if letter != 46:  # letter != b'.'
                    dim = shape[-i]
                    if letter not in letter_to_dim:
                        letter_to_dim[letter] = dim
                    elif type(dim) != sympy.Symbol:
                        letter_to_dim[letter] = dim
            num_operands = num_operands + 1

        new_sympy_shape = []
        from collections import OrderedDict

        num_letter_occurrences = OrderedDict()
        if mid_index != -1:
            right_equation = equation[mid_index + 2 :]
            right_ellipsis_index = right_equation.find(b"...")
            if right_ellipsis_index != -1:
                for i in range(num_ellipsis_indices):
                    new_sympy_shape.append(shape[i])
            for c in right_equation:
                if c != 46:  # c != b'.'
                    new_sympy_shape.append(letter_to_dim[c])
        else:
            for i in range(num_ellipsis_indices):
                new_sympy_shape.append(shape[i])
            for c in left_equation:
                if c != 44 and c != 46:  # c != b',' and c != b'.':
                    if c in num_letter_occurrences:
                        num_letter_occurrences[c] = num_letter_occurrences[c] + 1
                    else:
                        num_letter_occurrences[c] = 1
            for key, value in num_letter_occurrences.items():
                if value == 1:
                    new_sympy_shape.append(letter_to_dim[key])

        output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_sympy_shape))

    def _infer_Expand(self, node):  # noqa: N802
        expand_to_shape = as_list(self._try_get_value(node, 1), keep_none=True)
        if expand_to_shape is not None:
            # new_shape's dim can come from shape value
            self._update_computed_dims(expand_to_shape)
            shape = self._get_shape(node, 0)
            new_shape = self._broadcast_shapes(shape, get_shape_from_sympy_shape(expand_to_shape))
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(
                helper.make_tensor_value_info(
                    node.output[0],
                    self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                    new_shape,
                )
            )

    def _infer_Gather(self, node):  # noqa: N802
        data_shape = self._get_shape(node, 0)
        axis = handle_negative_axis(get_attribute(node, "axis", 0), len(data_shape))
        indices_shape = self._get_shape(node, 1)
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                data_shape[:axis] + indices_shape + data_shape[axis + 1 :],
            )
        )
        # for 1D input, do some sympy compute
        if node.input[0] in self.sympy_data_ and len(data_shape) == 1 and get_attribute(node, "axis", 0) == 0:
            idx = self._try_get_value(node, 1)
            if idx is not None:
                data = self.sympy_data_[node.input[0]]
                if type(data) == list:  # noqa: E721
                    if type(idx) == np.ndarray and len(idx.shape) == 1:
                        self.sympy_data_[node.output[0]] = [data[int(i)] for i in idx]
                    else:
                        self.sympy_data_[node.output[0]] = data[int(idx)]
                else:
                    assert idx == 0 or idx == -1
                    self.sympy_data_[node.output[0]] = data

    def _infer_GatherElements(self, node):  # noqa: N802
        indices_shape = self._get_shape(node, 1)
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                indices_shape,
            )
        )

    def _infer_GatherND(self, node):  # noqa: N802
        data_shape = self._get_shape(node, 0)
        data_rank = len(data_shape)
        indices_shape = self._get_shape(node, 1)
        len(indices_shape)
        last_index_dimension = indices_shape[-1]
        assert is_literal(last_index_dimension) and last_index_dimension <= data_rank
        new_shape = indices_shape[:-1] + data_shape[last_index_dimension:]
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                new_shape,
            )
        )

    def _infer_If(self, node):  # noqa: N802
        # special case for constant condition, in case there are mismatching shape from the non-executed branch
        subgraphs = [
            get_attribute(node, "then_branch"),
            get_attribute(node, "else_branch"),
        ]
        cond = self._try_get_value(node, 0)
        if cond is not None:
            if as_scalar(cond) > 0:
                subgraphs[1].CopyFrom(subgraphs[0])
            else:
                subgraphs[0].CopyFrom(subgraphs[1])

        for i_sub, subgraph in enumerate(subgraphs):
            subgraph_infer = self._onnx_infer_subgraph(node, subgraph, use_node_input=False)
            for i_out in range(len(node.output)):
                vi = self.known_vi_[node.output[i_out]]
                if i_sub == 0:
                    vi.CopyFrom(subgraph.output[i_out])
                    vi.name = node.output[i_out]
                else:
                    self._fuse_tensor_type(node, i_out, vi.type, subgraph.output[i_out].type)

                # pass on sympy data from subgraph, if cond is constant
                if cond is not None and i_sub == (0 if as_scalar(cond) > 0 else 1):
                    if subgraph.output[i_out].name in subgraph_infer.sympy_data_:
                        self.sympy_data_[vi.name] = subgraph_infer.sympy_data_[subgraph.output[i_out].name]

    def _infer_Loop(self, node):  # noqa: N802
        subgraph = get_attribute(node, "body")
        assert len(subgraph.input) == len(node.input)
        num_loop_carried = len(node.input) - 2  # minus the length and initial loop condition
        # when sequence_type is used as loop carried input
        # needs to run subgraph infer twice if the tensor shape in sequence contains None
        for i, si in enumerate(subgraph.input):
            si_name = si.name
            si.CopyFrom(self.known_vi_[node.input[i]])
            si.name = si_name

        self._onnx_infer_subgraph(node, subgraph)

        # check subgraph input/output for shape changes in loop carried variables
        # for tensor_type, create new symbolic dim when changing, i.e., output = Concat(input, a)
        # for sequence_type, propagate from output to input
        need_second_infer = False
        for i_out in range(1, num_loop_carried + 1):
            so = subgraph.output[i_out]
            so_shape = get_shape_from_value_info(so)
            if is_sequence(so.type):
                if so_shape and None in so_shape:
                    # copy shape from output to input
                    # note that loop input is [loop_len, cond, input_0, input_1, ...]
                    # while loop output is [cond, output_0, output_1, ...]
                    subgraph.input[i_out + 1].type.sequence_type.elem_type.CopyFrom(so.type.sequence_type.elem_type)
                    need_second_infer = True
            else:
                si = subgraph.input[i_out + 1]
                si_shape = get_shape_from_value_info(si)
                for di, dims in enumerate(zip(si_shape, so_shape)):
                    if dims[0] != dims[1]:
                        new_dim = onnx.TensorShapeProto.Dimension()
                        new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, i_out, di))
                        si.type.tensor_type.shape.dim[di].CopyFrom(new_dim)
                        so.type.tensor_type.shape.dim[di].CopyFrom(new_dim)
                        need_second_infer = True

        if need_second_infer:
            if self.verbose_ > 2:
                logger.debug(
                    "Rerun Loop: {}({}...), because of sequence in loop carried variables".format(
                        node.name, node.output[0]
                    )
                )
            self._onnx_infer_subgraph(node, subgraph, inc_subgraph_id=False)

        # create a new symbolic dimension for iteration dependent dimension
        loop_iter_dim = str(self._new_symbolic_dim_from_output(node))
        for i in range(len(node.output)):
            vi = self.known_vi_[node.output[i]]
            vi.CopyFrom(subgraph.output[i + 1])  # first subgraph output is condition, not in node output
            if i >= num_loop_carried:
                assert not is_sequence(vi.type)  # TODO: handle loop accumulation in sequence_type
                subgraph_vi_dim = subgraph.output[i + 1].type.tensor_type.shape.dim
                vi.type.tensor_type.shape.ClearField("dim")
                vi_dim = vi.type.tensor_type.shape.dim
                vi_dim.add().dim_param = loop_iter_dim
                vi_dim.extend(list(subgraph_vi_dim))
            vi.name = node.output[i]

    def _infer_MatMul(self, node):  # noqa: N802
        self._compute_matmul_shape(node)

    def _infer_MatMulInteger(self, node):  # noqa: N802
        self._compute_matmul_shape(node, onnx.TensorProto.INT32)

    def _infer_NonMaxSuppression(self, node):  # noqa: N802
        selected = str(self._new_symbolic_dim_from_output(node))
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, [selected, 3]))

    def _infer_NonZero(self, node):  # noqa: N802
        input_rank = self._get_shape_rank(node, 0)
        # create a new symbolic dimension for NonZero output
        nz_len = str(self._new_symbolic_dim_from_output(node, 0, 1))
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], vi.type.tensor_type.elem_type, [input_rank, nz_len]))

    def _infer_OneHot(self, node):  # noqa: N802
        sympy_shape = self._get_sympy_shape(node, 0)
        depth = self._try_get_value(node, 1)
        axis = get_attribute(node, "axis", -1)
        axis = handle_negative_axis(axis, len(sympy_shape) + 1)
        new_shape = get_shape_from_sympy_shape(
            sympy_shape[:axis]
            + [self._new_symbolic_dim_from_output(node) if not is_literal(depth) else depth]
            + sympy_shape[axis:]
        )
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[2]].type.tensor_type.elem_type,
                new_shape,
            )
        )

    def _infer_Pad(self, node):  # noqa: N802
        if get_opset(self.out_mp_) <= 10:
            pads = get_attribute(node, "pads")
        else:
            pads = self._try_get_value(node, 1)

        sympy_shape = self._get_sympy_shape(node, 0)
        rank = len(sympy_shape)

        if pads is not None:
            assert len(pads) == 2 * rank
            new_sympy_shape = [
                d + pad_up + pad_down for d, pad_up, pad_down in zip(sympy_shape, pads[:rank], pads[rank:])
            ]
            self._update_computed_dims(new_sympy_shape)
        else:
            # dynamic pads, create new symbolic dimensions
            new_sympy_shape = self._new_symbolic_shape(rank, node)
        output_tp = self.known_vi_[node.input[0]].type.tensor_type.elem_type

        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(node.output[0], output_tp, get_shape_from_sympy_shape(new_sympy_shape))
        )

    def _infer_Pool(self, node):  # noqa: N802
        sympy_shape = self._compute_conv_pool_shape(node)
        self._update_computed_dims(sympy_shape)
        for o in node.output:
            if not o:
                continue
            vi = self.known_vi_[o]
            vi.CopyFrom(
                helper.make_tensor_value_info(
                    o,
                    vi.type.tensor_type.elem_type,
                    get_shape_from_sympy_shape(sympy_shape),
                )
            )

    def _infer_aten_bitwise_or(self, node):
        shape0 = self._get_shape(node, 0)
        shape1 = self._get_shape(node, 1)
        new_shape = self._broadcast_shapes(shape0, shape1)
        t0 = self.known_vi_[node.input[0]]
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], t0.type.tensor_type.elem_type, new_shape))

    def _infer_aten_diagonal(self, node):
        sympy_shape = self._get_sympy_shape(node, 0)
        rank = len(sympy_shape)
        offset = self._try_get_value(node, 1)
        dim1 = self._try_get_value(node, 2)
        dim2 = self._try_get_value(node, 3)

        assert offset is not None and dim1 is not None and dim2 is not None
        dim1 = handle_negative_axis(dim1, rank)
        dim2 = handle_negative_axis(dim2, rank)

        new_shape = []
        for dim, val in enumerate(sympy_shape):
            if dim not in [dim1, dim2]:
                new_shape.append(val)

        shape1 = sympy_shape[dim1]
        shape2 = sympy_shape[dim2]
        if offset >= 0:
            diag_shape = sympy.Max(0, sympy.Min(shape1, shape2 - offset))
        else:
            diag_shape = sympy.Max(0, sympy.Min(shape1 + offset, shape2))
        new_shape.append(diag_shape)

        if node.output[0]:
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(
                helper.make_tensor_value_info(
                    node.output[0],
                    self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                    get_shape_from_sympy_shape(new_shape),
                )
            )

    def _infer_aten_multinomial(self, node):
        sympy_shape = self._get_sympy_shape(node, 0)
        rank = len(sympy_shape)
        assert rank in [1, 2]
        num_samples = self._try_get_value(node, 1)
        di = rank - 1
        last_dim = num_samples if num_samples else str(self._new_symbolic_dim_from_output(node, 0, di))
        output_shape = sympy_shape[:-1] + [last_dim]
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                onnx.TensorProto.INT64,
                get_shape_from_sympy_shape(output_shape),
            )
        )

    def _infer_aten_pool2d(self, node):
        sympy_shape = self._get_sympy_shape(node, 0)
        assert len(sympy_shape) == 4
        sympy_shape[-2:] = [self._new_symbolic_dim_from_output(node, 0, i) for i in [2, 3]]
        self._update_computed_dims(sympy_shape)
        for i, o in enumerate(node.output):
            if not o:
                continue
            vi = self.known_vi_[o]
            elem_type = onnx.TensorProto.INT64 if i == 1 else self.known_vi_[node.input[0]].type.tensor_type.elem_type
            vi.CopyFrom(helper.make_tensor_value_info(o, elem_type, get_shape_from_sympy_shape(sympy_shape)))

    def _infer_aten_minmax(self, node):
        vi = self.known_vi_[node.output[0]]
        if len(node.input) == 1:
            vi.CopyFrom(
                helper.make_tensor_value_info(
                    node.output[0], self.known_vi_[node.input[0]].type.tensor_type.elem_type, []
                )
            )
        else:
            assert len(node.input) == 3
            keepdim = self._try_get_value(node, 2)
            assert keepdim is not None  # can only handle known keepdim case.
            dim = self._try_get_value(node, 1)
            if dim is None:
                rank = self._get_shape_rank(node, 0)
                output_shape = self._new_symbolic_shape(rank if keepdim else rank - 1, node)
            else:
                shape = self._get_sympy_shape(node, 0)
                dim = handle_negative_axis(dim, len(shape))
                output_shape = shape[:dim]
                if keepdim:
                    output_shape += [1]
                output_shape += shape[dim + 1 :]

            output_shape = get_shape_from_sympy_shape(output_shape)
            vi.CopyFrom(
                helper.make_tensor_value_info(
                    node.output[0], self.known_vi_[node.input[0]].type.tensor_type.elem_type, output_shape
                )
            )
            vi1 = self.known_vi_[node.output[1]]
            vi1.CopyFrom(helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT64, output_shape))

    def _infer_aten_unfold(self, node):
        sympy_shape = self._get_sympy_shape(node, 0)
        dimension = self._try_get_value(node, 1)
        size = self._try_get_value(node, 2)
        step = self._try_get_value(node, 3)
        if dimension is not None and size is not None and step is not None:
            assert dimension < len(sympy_shape)
            sympy_shape[dimension] = (sympy_shape[dimension] - size) // step + 1
            sympy_shape.append(size)
        else:
            rank = len(sympy_shape)
            sympy_shape = self._new_symbolic_shape(rank + 1, node)
        self._update_computed_dims(sympy_shape)
        if node.output[0]:
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(
                helper.make_tensor_value_info(
                    node.output[0],
                    self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                    get_shape_from_sympy_shape(sympy_shape),
                )
            )

    def _infer_aten_argmax(self, node):
        new_shape = None
        if not node.input[1]:
            # The argmax of the flattened input is returned.
            new_shape = []
        else:
            dim = self._try_get_value(node, 1)
            keepdim = self._try_get_value(node, 2)
            if keepdim is not None:
                sympy_shape = self._get_sympy_shape(node, 0)
                if dim is not None:
                    dim = handle_negative_axis(dim, len(sympy_shape))
                    if keepdim:
                        sympy_shape[dim] = 1
                    else:
                        del sympy_shape[dim]
                else:
                    rank = len(sympy_shape)
                    sympy_shape = self._new_symbolic_shape(rank if keepdim else rank - 1, node)
                self._update_computed_dims(sympy_shape)
                new_shape = get_shape_from_sympy_shape(sympy_shape)
        if node.output[0] and new_shape is not None:
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, new_shape))

    def _infer_aten_group_norm(self, node):
        self._propagate_shape_and_type(node)
        input_shape = self._get_shape(node, 0)
        N = input_shape[0] if input_shape is not None and len(input_shape) != 0 else None  # noqa: N806
        group = self._try_get_value(node, 6)
        output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
        for i in [1, 2]:
            if node.output[i]:
                vi = self.known_vi_[node.output[i]]
                vi.CopyFrom(
                    helper.make_tensor_value_info(
                        node.output[i],
                        output_dtype,
                        [
                            N if N is not None else str(self._new_symbolic_dim_from_output(node, i, 0)),
                            (
                                as_scalar(group)
                                if group is not None
                                else str(self._new_symbolic_dim_from_output(node, i, 1))
                            ),
                        ],
                    )
                )

    def _infer_aten_upsample(self, node):
        new_shape = None
        input_shape = self._get_shape(node, 0)
        if input_shape is not None:
            new_shape = input_shape[:2]
            output_size = self._try_get_value(node, 1)
            if output_size is not None:
                new_shape += [dim_size.item() if type(dim_size) == np.int64 else dim_size for dim_size in output_size]
            else:
                rank = len(input_shape)
                new_shape += [str(self._new_symbolic_dim_from_output(node, 0, i)) for i in range(2, rank)]
        if node.output[0] and new_shape is not None:
            output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))

    def _infer_BatchNormalization(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

        # this works for opsets < 14 and 14 since we check i < len(node.output) in the loop
        for i in [1, 2, 3, 4]:
            if i < len(node.output) and node.output[i]:
                # all of these parameters have the same shape as the 1st input
                self._propagate_shape_and_type(node, input_index=1, output_index=i)

    def _infer_Range(self, node):  # noqa: N802
        vi = self.known_vi_[node.output[0]]
        input_data = self._get_int_or_float_values(node)
        if all([i is not None for i in input_data]):
            start = as_scalar(input_data[0])
            limit = as_scalar(input_data[1])
            delta = as_scalar(input_data[2])
            new_sympy_shape = [sympy.Max(sympy.ceiling((limit - start) / delta), 0)]
        else:
            new_sympy_shape = [self._new_symbolic_dim_from_output(node)]
        self._update_computed_dims(new_sympy_shape)
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                get_shape_from_sympy_shape(new_sympy_shape),
            )
        )

    def _infer_ReduceSum(self, node):  # noqa: N802
        keep_dims = get_attribute(node, "keepdims", 1)
        if get_opset(self.out_mp_) >= 13 and len(node.input) > 1:
            # ReduceSum changes axes to input[1] in opset 13
            axes = self._try_get_value(node, 1)
            vi = self.known_vi_[node.output[0]]
            if axes is None:
                assert keep_dims  # can only handle keep_dims==True when axes is unknown, by generating new ranks
                vi.CopyFrom(
                    helper.make_tensor_value_info(
                        node.output[0],
                        self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                        get_shape_from_sympy_shape(self._new_symbolic_shape(self._get_shape_rank(node, 0), node)),
                    )
                )
            else:
                shape = self._get_shape(node, 0)
                output_shape = []
                axes = [handle_negative_axis(a, len(shape)) for a in axes]
                for i, d in enumerate(shape):
                    if i in axes:
                        if keep_dims:
                            output_shape.append(1)
                    else:
                        output_shape.append(d)
                vi.CopyFrom(
                    helper.make_tensor_value_info(
                        node.output[0],
                        self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                        output_shape,
                    )
                )

    def _infer_ReduceProd(self, node):  # noqa: N802
        axes = get_attribute(node, "axes")
        keep_dims = get_attribute(node, "keepdims", 1)
        if keep_dims == 0 and axes == [0]:
            data = self._get_int_or_float_values(node)[0]
            if data is not None:
                self.sympy_data_[node.output[0]] = sympy_reduce_product(data)

    def _infer_RelativePositionBias(self, node):  # noqa: N802
        seq_len = self._try_get_value(node, 1)
        real_seq_len = self._try_get_value(node, 2)
        if seq_len is None or real_seq_len is None:
            return
        num_heads = self._get_sympy_shape(node, 0)[1]

        new_shape = [1, num_heads, str(seq_len), str(real_seq_len)]

        output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))

    def _infer_Reshape(self, node):  # noqa: N802
        shape_value = self._try_get_value(node, 1)
        vi = self.known_vi_[node.output[0]]
        if shape_value is None:
            shape_shape = self._get_shape(node, 1)
            assert len(shape_shape) == 1
            shape_rank = shape_shape[0]
            assert is_literal(shape_rank)
            vi.CopyFrom(
                helper.make_tensor_value_info(
                    node.output[0],
                    vi.type.tensor_type.elem_type,
                    get_shape_from_sympy_shape(self._new_symbolic_shape(shape_rank, node)),
                )
            )
        else:
            input_sympy_shape = self._get_sympy_shape(node, 0)
            total = 1
            for d in input_sympy_shape:
                total = total * d
            new_sympy_shape = []
            deferred_dim_idx = -1
            non_deferred_size = 1
            for i, d in enumerate(shape_value):
                if type(d) == sympy.Symbol:
                    new_sympy_shape.append(d)
                elif d == 0:
                    new_sympy_shape.append(input_sympy_shape[i])
                    non_deferred_size = non_deferred_size * input_sympy_shape[i]
                else:
                    new_sympy_shape.append(d)
                if d == -1:
                    deferred_dim_idx = i
                elif d != 0:
                    non_deferred_size = non_deferred_size * d

            assert new_sympy_shape.count(-1) < 2
            if -1 in new_sympy_shape:
                new_dim = total // non_deferred_size
                new_sympy_shape[deferred_dim_idx] = new_dim

            self._update_computed_dims(new_sympy_shape)
            vi.CopyFrom(
                helper.make_tensor_value_info(
                    node.output[0],
                    vi.type.tensor_type.elem_type,
                    get_shape_from_sympy_shape(new_sympy_shape),
                )
            )

        self._pass_on_sympy_data(node)

    def _infer_Resize(self, node):  # noqa: N802
        vi = self.known_vi_[node.output[0]]
        input_sympy_shape = self._get_sympy_shape(node, 0)
        if get_opset(self.out_mp_) <= 10:
            scales = self._try_get_value(node, 1)
            if scales is not None:
                new_sympy_shape = [sympy.simplify(sympy.floor(d * s)) for d, s in zip(input_sympy_shape, scales)]
                self._update_computed_dims(new_sympy_shape)
                vi.CopyFrom(
                    helper.make_tensor_value_info(
                        node.output[0],
                        self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                        get_shape_from_sympy_shape(new_sympy_shape),
                    )
                )
        else:
            roi = self._try_get_value(node, 1)
            scales = self._try_get_value(node, 2)
            sizes = self._try_get_value(node, 3)
            if sizes is not None:
                new_sympy_shape = [sympy.simplify(sympy.floor(s)) for s in sizes]
                self._update_computed_dims(new_sympy_shape)
            elif scales is not None:
                rank = len(scales)
                if get_attribute(node, "coordinate_transformation_mode") == "tf_crop_and_resize":
                    assert len(roi) == 2 * rank
                    roi_start = list(roi)[:rank]
                    roi_end = list(roi)[rank:]
                else:
                    roi_start = [0] * rank
                    roi_end = [1] * rank
                scales = list(scales)
                new_sympy_shape = [
                    sympy.simplify(sympy.floor(d * (end - start) * scale))
                    for d, start, end, scale in zip(input_sympy_shape, roi_start, roi_end, scales)
                ]
                self._update_computed_dims(new_sympy_shape)
            else:
                new_sympy_shape = self._new_symbolic_shape(self._get_shape_rank(node, 0), node)

            vi.CopyFrom(
                helper.make_tensor_value_info(
                    node.output[0],
                    self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                    get_shape_from_sympy_shape(new_sympy_shape),
                )
            )

    def _infer_Scan(self, node):  # noqa: N802
        subgraph = get_attribute(node, "body")
        num_scan_inputs = get_attribute(node, "num_scan_inputs")
        scan_input_axes = get_attribute(node, "scan_input_axes", [0] * num_scan_inputs)
        num_scan_states = len(node.input) - num_scan_inputs
        scan_input_axes = [
            handle_negative_axis(ax, self._get_shape_rank(node, i + num_scan_states))
            for i, ax in enumerate(scan_input_axes)
        ]
        # We may have cases where the subgraph has optional inputs that appear in both subgraph's input and initializer,
        # but not in the node's input. In such cases, the input model might be invalid, but let's skip those optional inputs.
        assert len(subgraph.input) >= len(node.input)
        subgraph_inputs = subgraph.input[: len(node.input)]
        for i, si in enumerate(subgraph_inputs):
            subgraph_name = si.name
            si.CopyFrom(self.known_vi_[node.input[i]])
            if i >= num_scan_states:
                scan_input_dim = si.type.tensor_type.shape.dim
                scan_input_dim.remove(scan_input_dim[scan_input_axes[i - num_scan_states]])
            si.name = subgraph_name
        self._onnx_infer_subgraph(node, subgraph)
        num_scan_outputs = len(node.output) - num_scan_states
        scan_output_axes = get_attribute(node, "scan_output_axes", [0] * num_scan_outputs)
        scan_input_dim = get_shape_from_type_proto(self.known_vi_[node.input[-1]].type)[scan_input_axes[-1]]
        for i, o in enumerate(node.output):
            vi = self.known_vi_[o]
            if i >= num_scan_states:
                shape = get_shape_from_type_proto(subgraph.output[i].type)
                new_dim = handle_negative_axis(scan_output_axes[i - num_scan_states], len(shape) + 1)
                shape = shape[:new_dim] + [scan_input_dim] + shape[new_dim:]
                vi.CopyFrom(helper.make_tensor_value_info(o, subgraph.output[i].type.tensor_type.elem_type, shape))
            else:
                vi.CopyFrom(subgraph.output[i])
            vi.name = o

    def _infer_ScatterElements(self, node):  # noqa: N802
        data_shape = self._get_shape(node, 0)
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                data_shape,
            )
        )

    def _infer_SequenceAt(self, node):  # noqa: N802
        # need to create new symbolic dimension if sequence shape has None:
        seq_shape = self._get_shape(node, 0)
        vi = self.known_vi_[node.output[0]]
        if seq_shape is not None:
            for di, d in enumerate(seq_shape):
                if d is not None:
                    continue
                new_dim = onnx.TensorShapeProto.Dimension()
                new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, 0, di))
                vi.type.tensor_type.shape.dim[di].CopyFrom(new_dim)

    def _infer_SequenceInsert(self, node):  # noqa: N802
        # workaround bug in onnx's shape inference
        vi_seq = self.known_vi_[node.input[0]]
        vi_tensor = self.known_vi_[node.input[1]]
        vi_out_seq = self.known_vi_[node.output[0]]
        vi_out_seq.CopyFrom(vi_seq)
        vi_out_seq.name = node.output[0]
        self._fuse_tensor_type(node, 0, vi_out_seq.type, vi_tensor.type)

    def _infer_Shape(self, node):  # noqa: N802
        self.sympy_data_[node.output[0]] = self._get_sympy_shape(node, 0)

    def _infer_Size(self, node):  # noqa: N802
        sympy_shape = self._get_sympy_shape(node, 0)
        self.sympy_data_[node.output[0]] = sympy_reduce_product(sympy_shape)
        self.known_vi_[node.output[0]].CopyFrom(
            helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, [])
        )

    def _infer_Slice(self, node):  # noqa: N802
        # SymPy fails to prove that `x_0 + ... + x_n >= 0` if one of `x_i` is a `sympy.Min(a, b)`,
        # even when the relation holds for both `a` and `b`.
        #
        # When given `expr` of form `min(a, b) + ...`, this function returns `[a + ..., b + ...]`,
        # so that we can prove inequalities for both expressions separately.
        #
        # If the number of `min(...)` subexpressions is not exactly one, this function just returns `[expr]`.
        def flatten_min(expr):
            assert isinstance(expr, sympy.Add), f"Expected a sum of two arguments, got {expr}"
            min_positions = [idx for idx in range(len(expr.args)) if isinstance(expr.args[idx], sympy.Min)]
            if len(min_positions) == 1:
                min_pos = min_positions[0]

                def replace_min_with_arg(arg_idx):
                    replaced = list(expr.args)
                    assert isinstance(
                        replaced[min_pos], sympy.Min
                    ), f"Expected a sympy.Min() at position {min_pos}, got {replaced[min_pos]}"
                    assert (
                        len(replaced[min_pos].args) == 2
                    ), f"Expected a sympy.Min() with exactly 2 arguments, got {replaced[min_pos]}"
                    replaced[min_pos] = replaced[min_pos].args[arg_idx]
                    return sympy.Add(*replaced)

                return [
                    replace_min_with_arg(0),
                    replace_min_with_arg(1),
                ]
            return [expr]

        def less_equal(x, y):
            try:
                return bool(x <= y)
            except TypeError:
                pass
            try:
                return bool(y >= x)
            except TypeError:
                pass
            try:
                return bool(-x >= -y)
            except TypeError:
                pass
            try:
                return bool(-y <= -x)
            except TypeError:
                pass
            try:
                return bool(y - x >= 0)
            except TypeError:
                # the last attempt; this may raise TypeError
                return all(bool(d >= 0) for d in flatten_min(y - x))

        def handle_negative_index(index, bound):
            """normalizes a negative index to be in [0, bound)"""
            try:
                if not less_equal(0, index):
                    if is_literal(index) and index <= -self.int_max_:
                        # this case is handled separately
                        return index
                    return bound + index
            except TypeError:
                logger.warning(f"Cannot determine if {index} < 0")
            return index

        if get_opset(self.out_mp_) <= 9:
            axes = get_attribute(node, "axes")
            starts = get_attribute(node, "starts")
            ends = get_attribute(node, "ends")
            if not axes:
                axes = list(range(len(starts)))
            steps = [1] * len(axes)
        else:
            starts = as_list(self._try_get_value(node, 1), keep_none=True)
            ends = as_list(self._try_get_value(node, 2), keep_none=True)
            axes = self._try_get_value(node, 3)
            steps = self._try_get_value(node, 4)
            if axes is None and not (starts is None and ends is None):
                axes = list(range(0, len(starts if starts is not None else ends)))
            if steps is None and not (starts is None and ends is None):
                steps = [1] * len(starts if starts is not None else ends)
            axes = as_list(axes, keep_none=True)
            steps = as_list(steps, keep_none=True)

        new_sympy_shape = self._get_sympy_shape(node, 0)
        if starts is None or ends is None:
            if axes is None:
                for i in range(len(new_sympy_shape)):
                    new_sympy_shape[i] = self._new_symbolic_dim_from_output(node, 0, i)
            else:
                new_sympy_shape = get_shape_from_sympy_shape(new_sympy_shape)
                for i in axes:
                    new_sympy_shape[i] = self._new_symbolic_dim_from_output(node, 0, i)
        else:
            for i, s, e, t in zip(axes, starts, ends, steps):
                e = handle_negative_index(e, new_sympy_shape[i])  # noqa: PLW2901
                if is_literal(e):
                    if e >= self.int_max_:
                        e = new_sympy_shape[i]  # noqa: PLW2901
                    elif e <= -self.int_max_:
                        e = 0 if s > 0 else -1  # noqa: PLW2901
                    elif is_literal(new_sympy_shape[i]):
                        if e < 0:
                            e = max(0, e + new_sympy_shape[i])  # noqa: PLW2901
                        e = min(e, new_sympy_shape[i])  # noqa: PLW2901
                    else:
                        if e > 0:
                            e = (  # noqa: PLW2901
                                sympy.Min(e, new_sympy_shape[i]) if e > 1 else e
                            )  # special case for slicing first to make computation easier
                else:
                    if is_literal(new_sympy_shape[i]):
                        e = sympy.Min(e, new_sympy_shape[i])  # noqa: PLW2901
                    else:
                        try:
                            if not less_equal(e, new_sympy_shape[i]):
                                e = new_sympy_shape[i]  # noqa: PLW2901
                        except Exception:
                            logger.warning(f"Unable to determine if {e} <= {new_sympy_shape[i]}, treat as equal")
                            e = new_sympy_shape[i]  # noqa: PLW2901

                s = handle_negative_index(s, new_sympy_shape[i])  # noqa: PLW2901
                if is_literal(new_sympy_shape[i]) and is_literal(s):
                    s = max(0, min(s, new_sympy_shape[i]))  # noqa: PLW2901

                new_sympy_shape[i] = sympy.simplify((e - s + t + (-1 if t > 0 else 1)) // t)

            self._update_computed_dims(new_sympy_shape)

        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                vi.type.tensor_type.elem_type,
                get_shape_from_sympy_shape(new_sympy_shape),
            )
        )

        # handle sympy_data if needed, for slice in shape computation
        if (
            node.input[0] in self.sympy_data_
            and [0] == axes
            and starts is not None
            and len(starts) == 1
            and ends is not None
            and len(ends) == 1
            and steps is not None
            and len(steps) == 1
        ):
            input_sympy_data = self.sympy_data_[node.input[0]]
            if type(input_sympy_data) == list or (  # noqa: E721
                type(input_sympy_data) == np.array and len(input_sympy_data.shape) == 1
            ):
                self.sympy_data_[node.output[0]] = input_sympy_data[starts[0] : ends[0] : steps[0]]

    def _infer_SoftmaxCrossEntropyLoss(self, node):  # noqa: N802
        vi = self.known_vi_[node.output[0]]
        elem_type = self.known_vi_[node.input[0]].type.tensor_type.elem_type

        # If output type is explicit specified in attribute, we use it as output tensor type.
        specified_output_type = get_attribute(node, "output_type", None)
        if specified_output_type is not None:
            elem_type = specified_output_type

        vi.type.tensor_type.elem_type = elem_type
        vi.type.tensor_type.shape.CopyFrom(onnx.TensorShapeProto())

        if len(node.output) > 1:
            data_shape = self._get_shape(node, 0)
            vi = self.known_vi_[node.output[1]]
            vi.CopyFrom(helper.make_tensor_value_info(vi.name, elem_type, data_shape))

    def _infer_Split_Common(self, node, make_value_info_func):  # noqa: N802
        input_sympy_shape = self._get_sympy_shape(node, 0)
        axis = handle_negative_axis(get_attribute(node, "axis", 0), len(input_sympy_shape))
        op_set = get_opset(self.out_mp_)

        # Depending on op-version 'split' are provided as attribute or via 2nd input
        if op_set < 13:
            split = get_attribute(node, "split")
            assert self._try_get_value(node, 1) is None
        else:
            split = self._try_get_value(node, 1)
            assert get_attribute(node, "split") is None

        if split is None:
            num_outputs = len(node.output)
            split = [input_sympy_shape[axis] / sympy.Integer(num_outputs)] * num_outputs
            self._update_computed_dims(split)
        else:
            split = [sympy.Integer(s) for s in split]

        for i_o in range(len(split)):
            vi = self.known_vi_[node.output[i_o]]
            vi.CopyFrom(
                make_value_info_func(
                    node.output[i_o],
                    self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                    get_shape_from_sympy_shape(input_sympy_shape[:axis] + [split[i_o]] + input_sympy_shape[axis + 1 :]),
                )
            )
            self.known_vi_[vi.name] = vi

    def _infer_Split(self, node):  # noqa: N802
        self._infer_Split_Common(node, helper.make_tensor_value_info)

    def _infer_SplitToSequence(self, node):  # noqa: N802
        self._infer_Split_Common(node, helper.make_sequence_value_info)

    def _infer_Squeeze(self, node):  # noqa: N802
        input_shape = self._get_shape(node, 0)
        op_set = get_opset(self.out_mp_)

        # Depending on op-version 'axes' are provided as attribute or via 2nd input
        if op_set < 13:
            axes = get_attribute(node, "axes")
            assert self._try_get_value(node, 1) is None
        else:
            axes = self._try_get_value(node, 1)
            assert get_attribute(node, "axes") is None

        if axes is None:
            # No axes have been provided (neither via attribute nor via input).
            # In this case the 'Shape' op should remove all axis with dimension 1.
            # For symbolic dimensions we guess they are !=1.
            output_shape = [s for s in input_shape if s != 1]
            if self.verbose_ > 0:
                symbolic_dimensions = [s for s in input_shape if type(s) != int]  # noqa: E721
                if len(symbolic_dimensions) > 0:
                    logger.debug(
                        f"Symbolic dimensions in input shape of op: '{node.op_type}' node: '{node.name}'. "
                        f"Assuming the following dimensions are never equal to 1: {symbolic_dimensions}"
                    )
        else:
            axes = [handle_negative_axis(a, len(input_shape)) for a in axes]
            output_shape = []
            for i in range(len(input_shape)):
                if i not in axes:
                    output_shape.append(input_shape[i])
                else:
                    assert input_shape[i] == 1 or type(input_shape[i]) != int  # noqa: E721
                    if self.verbose_ > 0 and type(input_shape[i]) != int:  # noqa: E721
                        logger.debug(
                            f"Symbolic dimensions in input shape of op: '{node.op_type}' node: '{node.name}'. "
                            f"Assuming the dimension '{input_shape[i]}' at index {i} of the input to be equal to 1."
                        )

        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                output_shape,
            )
        )
        self._pass_on_sympy_data(node)

    def _infer_Tile(self, node):  # noqa: N802
        repeats_value = self._try_get_value(node, 1)
        new_sympy_shape = []
        if repeats_value is not None:
            input_sympy_shape = self._get_sympy_shape(node, 0)
            for i, d in enumerate(input_sympy_shape):
                new_dim = d * repeats_value[i]
                new_sympy_shape.append(new_dim)
            self._update_computed_dims(new_sympy_shape)
        else:
            new_sympy_shape = self._new_symbolic_shape(self._get_shape_rank(node, 0), node)
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                vi.type.tensor_type.elem_type,
                get_shape_from_sympy_shape(new_sympy_shape),
            )
        )

    def _infer_TopK(self, node):  # noqa: N802
        rank = self._get_shape_rank(node, 0)
        axis = handle_negative_axis(get_attribute(node, "axis", -1), rank)
        new_shape = self._get_shape(node, 0)

        if get_opset(self.out_mp_) <= 9:
            k = get_attribute(node, "k")
        else:
            k = self._get_int_or_float_values(node)[1]

        if k is None:
            k = self._new_symbolic_dim_from_output(node)
        else:
            k = as_scalar(k)

        if type(k) in [int, str]:
            new_shape[axis] = k
        else:
            new_sympy_shape = self._get_sympy_shape(node, 0)
            new_sympy_shape[axis] = k
            self._update_computed_dims(
                new_sympy_shape
            )  # note that TopK dim could be computed in sympy_data, so need to update computed_dims when it enters shape
            new_shape = get_shape_from_sympy_shape(new_sympy_shape)

        for i_o in range(len(node.output)):
            vi = self.known_vi_[node.output[i_o]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[i_o], vi.type.tensor_type.elem_type, new_shape))

    def _infer_Transpose(self, node):  # noqa: N802
        if node.input[0] in self.sympy_data_:
            data_shape = self._get_shape(node, 0)
            perm = get_attribute(node, "perm", reversed(list(range(len(data_shape)))))
            input_data = self.sympy_data_[node.input[0]]
            self.sympy_data_[node.output[0]] = (
                np.transpose(np.array(input_data).reshape(*data_shape), axes=tuple(perm)).flatten().tolist()
            )

    def _infer_Unsqueeze(self, node):  # noqa: N802
        input_shape = self._get_shape(node, 0)
        op_set = get_opset(self.out_mp_)

        # Depending on op-version 'axes' are provided as attribute or via 2nd input
        if op_set < 13:
            axes = get_attribute(node, "axes")
            assert self._try_get_value(node, 1) is None
        else:
            axes = self._try_get_value(node, 1)
            assert get_attribute(node, "axes") is None

        output_rank = len(input_shape) + len(axes)
        axes = [handle_negative_axis(a, output_rank) for a in axes]

        input_axis = 0
        output_shape = []
        for i in range(output_rank):
            if i in axes:
                output_shape.append(1)
            else:
                output_shape.append(input_shape[input_axis])
                input_axis += 1

        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(
            helper.make_tensor_value_info(
                node.output[0],
                self.known_vi_[node.input[0]].type.tensor_type.elem_type,
                output_shape,
            )
        )

        self._pass_on_sympy_data(node)

    def _infer_ZipMap(self, node):  # noqa: N802
        map_key_type = None
        if get_attribute(node, "classlabels_int64s") is not None:
            map_key_type = onnx.TensorProto.INT64
        elif get_attribute(node, "classlabels_strings") is not None:
            map_key_type = onnx.TensorProto.STRING

        assert map_key_type is not None
        new_vi = onnx.ValueInfoProto()
        new_vi.name = node.output[0]
        new_vi.type.sequence_type.elem_type.map_type.value_type.tensor_type.elem_type = onnx.TensorProto.FLOAT
        new_vi.type.sequence_type.elem_type.map_type.key_type = map_key_type
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(new_vi)

    def _infer_Attention(self, node):  # noqa: N802
        shape = self._get_shape(node, 0)
        shape_weights = self._get_shape(node, 1)
        shape_bias = self._try_get_shape(node, 2)
        if shape_bias is not None:
            assert len(shape_bias) == 1
        tripled_hidden_size = shape_bias[0] if shape_bias is not None else shape_weights[1]
        if shape and len(shape) == 3:
            qkv_hidden_sizes_attr = get_attribute(node, "qkv_hidden_sizes")
            if qkv_hidden_sizes_attr is not None:
                assert len(qkv_hidden_sizes_attr) == 3
                shape[2] = int(qkv_hidden_sizes_attr[2])
            elif isinstance(tripled_hidden_size, int):
                shape[2] = int(tripled_hidden_size / 3)
            output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, shape))

            if len(node.output) > 1:
                # input shape: (batch_size, sequence_length, hidden_size)
                # past shape: (2, batch_size, num_heads, past_sequence_length, head_size)
                # mask shape: (batch_size, total_sequence_length) or (batch_size, sequence_length, total_sequence_length) or (batch_size, 1, max_seq_len, max_seq_len)
                # present shape: (2, batch_size, num_heads, total_sequence_length, head_size), where total_sequence_length=sequence_length+past_sequence_length
                input_shape = self._get_shape(node, 0)
                past_shape = self._get_shape(node, 4) if len(node.input) > 4 and node.input[4] else []
                mask_shape = self._get_shape(node, 3) if len(node.input) > 3 and node.input[3] else []

                if past_shape and len(past_shape) == 5:
                    if mask_shape and len(mask_shape) in [2, 3]:
                        past_shape[3] = mask_shape[-1]
                    elif input_shape and len(input_shape) == 3:
                        if isinstance(input_shape[1], int) and isinstance(past_shape[3], int):
                            past_shape[3] = input_shape[1] + past_shape[3]
                        else:
                            past_shape[3] = f"{past_shape[3]}+{input_shape[1]}"
                    vi = self.known_vi_[node.output[1]]
                    vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
                # No past input but present output still exists
                else:
                    num_heads = get_attribute(node, "num_heads")
                    head_size = input_shape[2] // num_heads
                    present_shape = [2, input_shape[0], num_heads, input_shape[1], head_size]
                    vi = self.known_vi_[node.output[1]]
                    vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))

    def _infer_GatedRelativePositionBias(self, node):  # noqa: N802
        # When padding is removed:
        #   query_layer: (token_count, num_heads x head_size)
        #   token_offset: (batch_size, seq_len)
        # Otherwise:
        #   query_layer: (batch_size, seq_len, num_heads x head_size)
        #   token_offset: None
        # Output shape: (batch_size, num_heads, seq_len, seq_len)
        num_heads = get_attribute(node, "num_heads")

        token_offset_shape = self._try_get_shape(node, 6)
        if token_offset_shape is not None:
            output_shape = [token_offset_shape[0], num_heads, token_offset_shape[1], token_offset_shape[1]]
        else:
            query_layer_shape = self._get_shape(node, 0)
            assert query_layer_shape is not None and len(query_layer_shape) == 3
            output_shape = [query_layer_shape[0], num_heads, query_layer_shape[1], query_layer_shape[1]]

        output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))

    def _infer_PackedAttention(self, node):  # noqa: N802
        shape = self._get_shape(node, 0)
        shape_weights = self._get_shape(node, 1)
        shape_bias = self._try_get_shape(node, 2)
        if shape_bias is not None:
            assert len(shape_bias) == 1
        tripled_hidden_size = shape_bias[0] if shape_bias is not None else shape_weights[1]
        if shape and len(shape) == 2:
            qkv_hidden_sizes_attr = get_attribute(node, "qkv_hidden_sizes")
            if qkv_hidden_sizes_attr is not None:
                assert len(qkv_hidden_sizes_attr) == 3
                shape[1] = int(qkv_hidden_sizes_attr[2])
            elif isinstance(tripled_hidden_size, int):
                shape[1] = int(tripled_hidden_size / 3)
            output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, shape))

    def _infer_PackedMultiHeadAttention(self, node):  # noqa: N802
        shape_value = self._try_get_shape(node, 2)
        if shape_value is not None and len(shape_value) == 2:
            output_shape = shape_value
        else:
            shape_query = self._get_shape(node, 0)
            assert shape_query is not None and len(shape_query) == 4
            output_shape = [shape_query[0], shape_query[1] * shape_query[3]]

        output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))

    def _infer_RemovePadding(self, node):  # noqa: N802
        shape = self._get_shape(node, 0)
        if shape and len(shape) == 3:
            output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, ["token_count", shape[2]]))

            vi_token_offset = self.known_vi_[node.output[1]]
            vi_token_offset.CopyFrom(
                helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT32, [shape[0], shape[1]])
            )

            vi_cumulated_seq_len = self.known_vi_[node.output[2]]
            vi_cumulated_seq_len.CopyFrom(
                helper.make_tensor_value_info(node.output[2], onnx.TensorProto.INT32, ["batch_size + 1"])
            )

            vi_max_seq_len = self.known_vi_[node.output[3]]
            vi_max_seq_len.CopyFrom(helper.make_tensor_value_info(node.output[3], onnx.TensorProto.INT32, [1]))

    def _infer_RestorePadding(self, node):  # noqa: N802
        shape_input = self._get_shape(node, 0)
        shape_token_offset = self._get_shape(node, 1)
        if shape_input and len(shape_input) == 2 and shape_token_offset and len(shape_token_offset) == 2:
            output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
            vi = self.known_vi_[node.output[0]]

            output_shape = [shape_token_offset[0], shape_token_offset[1], shape_input[1]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))

    def _infer_BiasGelu(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

    def _infer_MultiHeadAttention(self, node):  # noqa: N802
        # Output 0 has shape (batch_size, sequence_length, v_hidden_size)
        # Q, K and V without packing:
        #   Input 0 (query) has shape (batch_size, sequence_length, hidden_size)
        #   Input 1 (key) has shape (batch_size, kv_sequence_length, hidden_size) or (batch_size, num_heads, kv_sequence_length, head_size)
        #   Input 2 (value) has shape (batch_size, kv_sequence_length, v_hidden_size) or (batch_size, num_heads, kv_sequence_length, head_size)
        # Packed KV:
        #   Input 0 (query) has shape (batch_size, sequence_length, hidden_size)
        #   Input 1 (batch_size, kv_sequence_length, num_heads, 2, head_size)
        #   Input 2  nullptr
        # Packed QKV:
        #   Input 0 (batch_size, sequence_length, num_heads, 3, head_size)
        #   Input 1  nullptr
        #   Input 2  nullptr

        query_shape = self._get_shape(node, 0)
        total_sequence_length = None
        output_dtype = None
        if query_shape is not None:
            if len(query_shape) == 3:
                key_shape = self._try_get_shape(node, 1)
                # By default, hidden size is same for Q/K/V. Only need check v_hidden_size when value is provided.
                output_shape = query_shape
                if key_shape is not None and len(key_shape) == 3:
                    value_shape = self._try_get_shape(node, 2)
                    if value_shape is not None and len(value_shape) == 3:
                        output_shape[2] = value_shape[2]
                    total_sequence_length = key_shape[1]

                output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
                vi = self.known_vi_[node.output[0]]
                vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))

            elif len(query_shape) == 5:
                if isinstance(query_shape[2], int) and isinstance(query_shape[4], int):
                    output_shape = [query_shape[0], query_shape[1], query_shape[2] * query_shape[4]]
                else:
                    output_shape = [query_shape[0], query_shape[1], f"{query_shape[2]}*{query_shape[4]}"]

                total_sequence_length = query_shape[1]

                output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
                vi = self.known_vi_[node.output[0]]
                vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))

            if len(node.output) > 1:
                batch_size = query_shape[0]
                num_heads = get_attribute(node, "num_heads")

                head_size = None
                if len(query_shape) == 3:
                    head_size = (
                        int(query_shape[2] / num_heads)
                        if isinstance(query_shape[2], int)
                        else f"{query_shape[2]}/{num_heads}"
                    )
                else:
                    head_size = query_shape[4]

                past_shape = self._try_get_shape(node, 6)

                if past_shape is not None:
                    if isinstance(past_shape[2], int) and isinstance(total_sequence_length, int):
                        total_sequence_length = past_shape[2] + total_sequence_length
                    else:
                        total_sequence_length = f"{past_shape[2]}+{total_sequence_length}"

                present_shape = [batch_size, num_heads, total_sequence_length, head_size]

                assert output_dtype is not None
                if len(node.output) > 2 and node.output[1] and node.output[2]:
                    vi = self.known_vi_[node.output[1]]
                    vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))
                    vi = self.known_vi_[node.output[2]]
                    vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))

    def _infer_DecoderMaskedMultiHeadAttention(self, node):  # noqa: N802
        # Output 0 has shape (batch_size, 1, v_hidden_size)
        # Q, K and V without packing:
        #   Input 0 (query) has shape (batch_size, 1, hidden_size)
        #   Input 5 (past_key) if exists has shape (batch_size, num_heads, max_sequence_length, head_size)

        query_shape = self._get_shape(node, 0)
        if query_shape is not None:
            output_shape = query_shape
            output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
            assert output_dtype is not None
            vi = self.known_vi_[node.output[0]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))

            if len(node.output) > 2 and node.output[1] and node.output[2]:
                past_shape = self._try_get_shape(node, 5)
                if past_shape is not None:
                    vi = self.known_vi_[node.output[1]]
                    vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
                    vi = self.known_vi_[node.output[2]]
                    vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))

    def _infer_FastGelu(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

    def _infer_Gelu(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

    def _infer_QuickGelu(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

    def _infer_GemmFastGelu(self, node):  # noqa: N802
        self._compute_matmul_shape(node)

    def _infer_GemmFloat8(self, node):  # noqa: N802
        self._compute_matmul_shape(node)

    def _infer_LayerNormalization(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)
        if len(node.output) > 1:
            axis = get_attribute(node, "axis")
            if axis is None:
                axis = -1
            x_shape = self._get_shape(node, 0)
            if x_shape is not None:
                rank = len(x_shape)
                axis = handle_negative_axis(axis, rank)
                mean_shape = x_shape[:axis] + [1 for _ in range(rank - axis)]
                mean_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
                if mean_dtype == onnx.TensorProto.FLOAT16 or mean_dtype == onnx.TensorProto.BFLOAT16:
                    mean_dtype = onnx.TensorProto.FLOAT
                vi = self.known_vi_[node.output[1]]
                vi.CopyFrom(helper.make_tensor_value_info(node.output[1], mean_dtype, mean_shape))
                if len(node.output) > 2:
                    vi = self.known_vi_[node.output[2]]
                    vi.CopyFrom(helper.make_tensor_value_info(node.output[2], mean_dtype, mean_shape))

    def _infer_LongformerAttention(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

    def _infer_EmbedLayerNormalization(self, node):  # noqa: N802
        input_ids_shape = self._get_shape(node, 0)
        word_embedding_shape = self._get_shape(node, 2)
        assert len(input_ids_shape) == 2 and len(word_embedding_shape) == 2
        output_shape = [*input_ids_shape, word_embedding_shape[1]]

        word_embedding_dtype = self.known_vi_[node.input[2]].type.tensor_type.elem_type
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], word_embedding_dtype, output_shape))

        if len(node.output) > 1 and node.output[1]:
            mask_index_shape = [input_ids_shape[0]]
            vi = self.known_vi_[node.output[1]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT32, mask_index_shape))

        if len(node.output) > 2:
            # Optional output of add before layer normalization is done
            # shape is same as the output
            vi = self.known_vi_[node.output[2]]
            vi.CopyFrom(helper.make_tensor_value_info(node.output[2], word_embedding_dtype, output_shape))

    def _infer_SkipLayerNormalization(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

        # If the SkipLayerNormalization node contains the optional
        # output for inference, infer the shape and type for it too
        if len(node.output) > 3:
            self._propagate_shape_and_type(node, 0, 3)

    def _infer_GroupNorm(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

    def _infer_PagedAttention(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

    def _infer_GroupQueryAttention(self, node):  # noqa: N802
        output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type

        past_shape = self._try_get_shape(node, 3)
        if past_shape is not None:
            vi = self.known_vi_[node.output[1]]
            vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
            vi = self.known_vi_[node.output[2]]
            vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))

        if node.input[1] != "" and node.input[2] != "":
            self._propagate_shape_and_type(node, 0, 0)
        else:
            # combined qkv: (batch_size, sequence_length, num_heads * head_size + 2 * kv_num_heads * head_size)
            assert node.input[1] == "" and node.input[2] == ""
            num_heads = get_attribute(node, "num_heads")
            kv_num_heads = get_attribute(node, "kv_num_heads")
            query_shape = self._get_shape(node, 0)
            if query_shape is not None:
                hidden_size = query_shape[2]
                if isinstance(hidden_size, int):
                    head_size = int(hidden_size / (num_heads + 2 * kv_num_heads))
                    query_shape[2] = num_heads * head_size
                    vi = self.known_vi_[node.output[0]]
                    vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, query_shape))

    def _infer_SkipGroupNorm(self, node):  # noqa: N802
        self._propagate_shape_and_type(node, 0, 0)
        if len(node.output) > 1:
            self._propagate_shape_and_type(node, 0, 1)

    def _infer_BiasSplitGelu(self, node):  # noqa: N802
        input_shape = self._get_shape(node, 0)
        bias_shape = self._get_shape(node, 1)
        if input_shape and bias_shape and isinstance(bias_shape[0], int):
            output_shape = input_shape
            output_shape[2] = int(bias_shape[0] / 2)
            vi = self.known_vi_[node.output[0]]
            output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
            vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, output_shape))

    def _infer_BiasAdd(self, node):  # noqa: N802
        self._propagate_shape_and_type(node)

    def _infer_RotaryEmbedding(self, node):  # noqa: N802
        if len(node.output) == 1:
            self._propagate_shape_and_type(node)
        elif len(node.output) == 2:
            # Extraneous constant nodes outputted by RotaryEmbedding function made with `export_modules_as_functions`
            self._propagate_shape_and_type(node, input_index=1, output_index=0)
            self._propagate_shape_and_type(node, input_index=0, output_index=1)  # true output
        elif len(node.output) == 3:
            # Extraneous constant nodes outputted by RotaryEmbedding function made with `export_modules_as_functions`
            self._propagate_shape_and_type(node, input_index=1, output_index=0)
            self._propagate_shape_and_type(node, input_index=1, output_index=1)
            self._propagate_shape_and_type(node, input_index=0, output_index=2)  # true output

    def _infer_PythonOp(self, node):  # noqa: N802
        output_tensor_types = get_attribute(node, "output_tensor_types")
        assert output_tensor_types, f"PythonOp '{node.name}' has no output_tensor_types attribute."
        output_tensor_ranks = get_attribute(node, "output_tensor_ranks")
        assert output_tensor_ranks, f"PythonOp '{node.name}' has no output_tensor_ranks attribute."

        from onnxruntime.capi._pybind_state import get_shape_inference_function

        func_name = get_attribute(node, "func_name").decode()
        shape_inferer = get_shape_inference_function(func_name)

        # Set the context output separately.
        # The first output is torch.autograd.Function''s context.
        vi = self.known_vi_[node.output[0]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, []))

        if shape_inferer is not None:
            input_shapes = []
            input_dtypes = []
            for input_index in range(len(node.input)):
                shape = self._get_shape(node, input_index)
                input_shapes.append(shape)
                input_dtype = self.known_vi_[node.input[input_index]].type.tensor_type.elem_type
                input_dtypes.append(input_dtype)
            output_shapes, output_dtypes = shape_inferer(node, input_shapes, input_dtypes)
            assert len(output_shapes) == len(output_dtypes) == (len(node.output) - 1), (
                f"PythonOp '{func_name}' returned {len(output_shapes)} shapes and {len(output_dtypes)} dtypes, "
                f"but expected {len(node.output) - 1} outputs."
            )
            for i in range(len(node.output) - 1):
                output_index = i + 1
                vi = self.known_vi_[node.output[output_index]]
                vi.CopyFrom(
                    helper.make_tensor_value_info(node.output[output_index], output_dtypes[i], output_shapes[i])
                )
        else:
            # General shape inference for PythonOp.
            # Outputs after torch.autograd.Function's context are tensors.
            # We assume their ranks are fixed for different model inputs.
            for i in range(len(node.output) - 1):
                # Process the i-th tensor outputs.
                vi = self.known_vi_[node.output[i + 1]]
                sympy_shape = self._new_symbolic_shape(output_tensor_ranks[i], node)
                shape = get_shape_from_sympy_shape(sympy_shape)
                value_info = helper.make_tensor_value_info(node.output[i + 1], output_tensor_types[i], shape)
                vi.CopyFrom(value_info)

    def _propagate_shape_and_type(self, node, input_index=0, output_index=0):
        shape = self._get_shape(node, input_index)
        output_dtype = self.known_vi_[node.input[input_index]].type.tensor_type.elem_type
        vi = self.known_vi_[node.output[output_index]]
        vi.CopyFrom(helper.make_tensor_value_info(node.output[output_index], output_dtype, shape))

    def _is_none_dim(self, dim_value):
        if type(dim_value) != str:  # noqa: E721
            return False
        if "unk__" not in dim_value:
            return False
        if dim_value in self.symbolic_dims_:
            return False
        return True

    def _is_shape_contains_none_dim(self, out_shape):
        for out in out_shape:
            if self._is_none_dim(out):
                return out
        return None

    def _infer_impl(self, start_sympy_data=None):
        self.sympy_data_ = start_sympy_data or {}
        self.out_mp_.graph.ClearField("value_info")
        self._apply_suggested_merge(graph_input_only=True)
        self.input_symbols_ = set()
        for i in self.out_mp_.graph.input:
            input_shape = get_shape_from_value_info(i)
            if input_shape is None:
                continue

            if is_sequence(i.type):
                input_dims = i.type.sequence_type.elem_type.tensor_type.shape.dim
            else:
                input_dims = i.type.tensor_type.shape.dim

            for i_dim, dim in enumerate(input_shape):
                if dim is None:
                    # some models use None for symbolic dim in input, replace it with a string
                    input_dims[i_dim].dim_param = str(self._new_symbolic_dim(i.name, i_dim))

            self.input_symbols_.update([d for d in input_shape if type(d) == str])  # noqa: E721

        for s in self.input_symbols_:
            if s in self.suggested_merge_:
                s_merge = self.suggested_merge_[s]
                assert s_merge in self.symbolic_dims_
                self.symbolic_dims_[s] = self.symbolic_dims_[s_merge]
            else:
                # Since inputs are not produced by other ops, we can assume positivity
                self.symbolic_dims_[s] = sympy.Symbol(s, integer=True, positive=True)
        # create a temporary ModelProto for single node inference
        # note that we remove initializer to have faster inference
        # for tensor ops like Reshape/Tile/Expand that read initializer, we need to do sympy computation based inference anyways
        self.tmp_mp_ = onnx.ModelProto()
        self.tmp_mp_.CopyFrom(self.out_mp_)
        self.tmp_mp_.graph.ClearField("initializer")

        # compute prerequesite for node for topological sort
        # node with subgraphs may have dependency on implicit inputs, which will affect topological sort
        prereq_for_node = {}  # map from node to all its inputs, including implicit ones in subgraph

        def get_prereq(node):
            names = {i for i in node.input if i}
            subgraphs = []
            if node.op_type == "If":
                subgraphs = [
                    get_attribute(node, "then_branch"),
                    get_attribute(node, "else_branch"),
                ]
            elif node.op_type in ["Loop", "Scan"]:
                subgraphs = [get_attribute(node, "body")]
            for g in subgraphs:
                g_outputs_and_initializers = {i.name for i in g.initializer}
                g_prereq = set()
                for n in g.node:
                    g_outputs_and_initializers.update(n.output)
                for n in g.node:
                    g_prereq.update([i for i in get_prereq(n) if i not in g_outputs_and_initializers])
                names.update(g_prereq)
                # remove subgraph inputs from g_prereq since those are local-only
                for i in g.input:
                    if i.name in names:
                        names.remove(i.name)
            return names

        for n in self.tmp_mp_.graph.node:
            prereq_for_node[n.output[0]] = get_prereq(n)

        # topological sort nodes, note there might be dead nodes so we check if all graph outputs are reached to terminate
        sorted_nodes = []
        sorted_known_vi = {i.name for i in list(self.out_mp_.graph.input) + list(self.out_mp_.graph.initializer)}
        if any([o.name in sorted_known_vi for o in self.out_mp_.graph.output]):
            # Loop/Scan will have some graph output in graph inputs, so don't do topological sort
            sorted_nodes = self.out_mp_.graph.node
        else:
            while not all([o.name in sorted_known_vi for o in self.out_mp_.graph.output]):
                old_sorted_nodes_len = len(sorted_nodes)
                for node in self.out_mp_.graph.node:
                    if (node.output[0] not in sorted_known_vi) and all(
                        [i in sorted_known_vi for i in prereq_for_node[node.output[0]] if i]
                    ):
                        sorted_known_vi.update(node.output)
                        sorted_nodes.append(node)
                if old_sorted_nodes_len == len(sorted_nodes) and not all(
                    [o.name in sorted_known_vi for o in self.out_mp_.graph.output]
                ):
                    raise Exception("Invalid model with cyclic graph")

        for node in sorted_nodes:
            assert all([i in self.known_vi_ for i in node.input if i])
            self._onnx_infer_single_node(node)
            known_aten_op = False
            if node.op_type in self.dispatcher_:
                self.dispatcher_[node.op_type](node)
            elif node.op_type in ["ConvTranspose"]:
                # onnx shape inference ops like ConvTranspose may have empty shape for symbolic input
                # before adding symbolic compute for them
                # mark the output type as UNDEFINED to allow guessing of rank
                vi = self.known_vi_[node.output[0]]
                if len(vi.type.tensor_type.shape.dim) == 0:
                    vi.type.tensor_type.elem_type = onnx.TensorProto.UNDEFINED
            elif node.op_type == "ATen" and node.domain == "org.pytorch.aten":
                for attr in node.attribute:
                    # TODO: Is overload_name needed?
                    if attr.name == "operator":
                        aten_op_name = attr.s.decode("utf-8") if isinstance(attr.s, bytes) else attr.s
                        if aten_op_name in self.aten_op_dispatcher_:
                            known_aten_op = True
                            self.aten_op_dispatcher_[aten_op_name](node)
                        break

            if self.verbose_ > 2:
                logger.debug(node.op_type + ": " + node.name)
                for i, name in enumerate(node.input):
                    logger.debug(
                        "  Input {}: {} {}".format(i, name, "initializer" if name in self.initializers_ else "")
                    )

            # onnx automatically merge dims with value, i.e. Mul(['aaa', 'bbb'], [1000, 1]) -> [1000, 'bbb']
            # symbolic shape inference needs to apply merge of 'aaa' -> 1000 in this case
            if node.op_type in [
                "Add",
                "Sub",
                "Mul",
                "Div",
                "MatMul",
                "MatMulInteger",
                "MatMulInteger16",
                "Where",
                "Sum",
            ]:
                vi = self.known_vi_[node.output[0]]
                out_rank = len(get_shape_from_type_proto(vi.type))
                in_shapes = [self._get_shape(node, i) for i in range(len(node.input))]
                for d in range(out_rank - (2 if node.op_type in ["MatMul", "MatMulInteger", "MatMulInteger16"] else 0)):
                    in_dims = [s[len(s) - out_rank + d] for s in in_shapes if len(s) + d >= out_rank]
                    if len(in_dims) > 1:
                        self._check_merged_dims(in_dims, allow_broadcast=True)

            for i_o in range(len(node.output)):
                # Special cases:
                # 1) We do not care about the training related outputs of SkipLayerNormalization
                # 2) We do not care about the extraneous constant outputs in RotaryEmbedding because
                # the RotaryEmbedding op created during export can be replaced by the RotaryEmbedding
                # contrib op
                if (
                    node.op_type == "SkipLayerNormalization" or node.op_type == "SkipSimplifiedLayerNormalization"
                ) and i_o in [1, 2]:
                    continue
                if node.op_type == "RotaryEmbedding" and len(node.output) > 1:
                    # Skip symbolic shape inference for RotaryEmbedding functions that have extraneous outputs
                    # generated by `export_modules_as_functions`
                    continue

                vi = self.known_vi_[node.output[i_o]]
                out_type = vi.type
                out_type_kind = out_type.WhichOneof("value")

                # do not process shape for non-tensors
                if out_type_kind not in ["tensor_type", "sparse_tensor_type", None]:
                    if self.verbose_ > 2:
                        if out_type_kind == "sequence_type":
                            seq_cls_type = out_type.sequence_type.elem_type.WhichOneof("value")
                            if seq_cls_type == "tensor_type":
                                logger.debug(
                                    "  {}: sequence of {} {}".format(
                                        node.output[i_o],
                                        str(get_shape_from_value_info(vi)),
                                        onnx.TensorProto.DataType.Name(
                                            vi.type.sequence_type.elem_type.tensor_type.elem_type
                                        ),
                                    )
                                )
                            else:
                                logger.debug(f"  {node.output[i_o]}: sequence of {seq_cls_type}")
                        else:
                            logger.debug(f"  {node.output[i_o]}: {out_type_kind}")
                    continue

                out_shape = get_shape_from_value_info(vi)
                out_type_undefined = out_type.tensor_type.elem_type == onnx.TensorProto.UNDEFINED
                if self.verbose_ > 2:
                    logger.debug(
                        "  {}: {} {}".format(
                            node.output[i_o],
                            str(out_shape),
                            onnx.TensorProto.DataType.Name(vi.type.tensor_type.elem_type),
                        )
                    )
                    if node.output[i_o] in self.sympy_data_:
                        logger.debug("  Sympy Data: " + str(self.sympy_data_[node.output[i_o]]))

                # onnx >= 1.11.0, use unk__#index instead of None when the shape dim is uncertain
                if (
                    out_shape is not None and (None in out_shape or self._is_shape_contains_none_dim(out_shape))
                ) or out_type_undefined:
                    if self.auto_merge_:
                        if node.op_type in [
                            "Add",
                            "Sub",
                            "Mul",
                            "Div",
                            "MatMul",
                            "MatMulInteger",
                            "MatMulInteger16",
                            "Concat",
                            "Where",
                            "Sum",
                            "Equal",
                            "Less",
                            "Greater",
                            "LessOrEqual",
                            "GreaterOrEqual",
                            "Min",
                            "Max",
                        ]:
                            shapes = [self._get_shape(node, i) for i in range(len(node.input))]
                            if node.op_type in [
                                "MatMul",
                                "MatMulInteger",
                                "MatMulInteger16",
                            ]:
                                if None in out_shape or self._is_shape_contains_none_dim(out_shape):
                                    if None in out_shape:
                                        idx = out_shape.index(None)
                                    else:
                                        idx = out_shape.index(self._is_shape_contains_none_dim(out_shape))
                                    dim_idx = [len(s) - len(out_shape) + idx for s in shapes]
                                    # only support auto merge for MatMul for dim < rank-2 when rank > 2
                                    assert len(shapes[0]) > 2 and dim_idx[0] < len(shapes[0]) - 2
                                    assert len(shapes[1]) > 2 and dim_idx[1] < len(shapes[1]) - 2
                        elif node.op_type == "Expand":
                            # auto merge for cases like Expand([min(batch, 1), min(seq, 512)], [batch, seq])
                            shapes = [
                                self._get_shape(node, 0),
                                self._get_value(node, 1),
                            ]
                        else:
                            shapes = []

                        if shapes:
                            for idx in range(len(out_shape)):
                                if out_shape[idx] is not None and not self._is_none_dim(out_shape[idx]):
                                    continue
                                # note that the broadcasting rule aligns from right to left
                                # if a tensor has a lower rank (dim_idx[idx] < 0), it would automatically broadcast and need no merge
                                dim_idx = [len(s) - len(out_shape) + idx for s in shapes]
                                if len(dim_idx) > 0:
                                    self._add_suggested_merge(
                                        [
                                            s[i] if is_literal(s[i]) else str(s[i])
                                            for s, i in zip(shapes, dim_idx)
                                            if i >= 0
                                        ]
                                    )
                            self.run_ = True
                        else:
                            self.run_ = False
                    else:
                        self.run_ = False

                    # create new dynamic dims for ops not handled by symbolic shape inference
                    if self.run_ is False and node.op_type not in self.dispatcher_ and not known_aten_op:
                        is_unknown_op = out_type_undefined and (out_shape is None or len(out_shape) == 0)
                        if is_unknown_op:
                            # unknown op to ONNX, maybe from higher opset or other domain
                            # only guess the output rank from input 0 when using guess_output_rank option
                            out_rank = self._get_shape_rank(node, 0) if self.guess_output_rank_ else -1
                        else:
                            # valid ONNX op, but not handled by symbolic shape inference, just assign dynamic shape
                            out_rank = len(out_shape)

                        if out_rank >= 0:
                            new_shape = self._new_symbolic_shape(out_rank, node, i_o)
                            if out_type_undefined:
                                # guess output data type from input vi if not defined
                                out_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
                            else:
                                # otherwise, use original data type
                                out_dtype = vi.type.tensor_type.elem_type
                            vi.CopyFrom(
                                helper.make_tensor_value_info(
                                    vi.name,
                                    out_dtype,
                                    get_shape_from_sympy_shape(new_shape),
                                )
                            )

                            if self.verbose_ > 0:
                                if is_unknown_op:
                                    logger.debug(
                                        "Possible unknown op: {} node: {}, guessing {} shape".format(
                                            node.op_type, node.name, vi.name
                                        )
                                    )
                                if self.verbose_ > 2:
                                    logger.debug(
                                        "  {}: {} {}".format(
                                            node.output[i_o],
                                            str(new_shape),
                                            vi.type.tensor_type.elem_type,
                                        )
                                    )

                            self.run_ = True
                            continue  # continue the inference after guess, no need to stop as no merge is needed

                    if self.verbose_ > 0 or not self.auto_merge_ or out_type_undefined:
                        logger.debug("Stopping at incomplete shape inference at " + node.op_type + ": " + node.name)
                        logger.debug("node inputs:")
                        for i in node.input:
                            if i in self.known_vi_:
                                logger.debug(self.known_vi_[i])
                            else:
                                logger.debug(f"not in known_vi_ for {i}")
                        logger.debug("node outputs:")
                        for o in node.output:
                            if o in self.known_vi_:
                                logger.debug(self.known_vi_[o])
                            else:
                                logger.debug(f"not in known_vi_ for {o}")
                        if self.auto_merge_ and not out_type_undefined:
                            logger.debug("Merging: " + str(self.suggested_merge_))
                    return False

        self.run_ = False
        return True

    def _update_output_from_vi(self):
        for output in self.out_mp_.graph.output:
            if output.name in self.known_vi_:
                output.CopyFrom(self.known_vi_[output.name])

    @staticmethod
    def infer_shapes(in_mp, int_max=2**31 - 1, auto_merge=False, guess_output_rank=False, verbose=0):
        onnx_opset = get_opset(in_mp)
        if (not onnx_opset) or onnx_opset < 7:
            logger.warning("Only support models of onnx opset 7 and above.")
            return None
        symbolic_shape_inference = SymbolicShapeInference(int_max, auto_merge, guess_output_rank, verbose)
        all_shapes_inferred = False
        symbolic_shape_inference._preprocess(in_mp)
        while symbolic_shape_inference.run_:
            all_shapes_inferred = symbolic_shape_inference._infer_impl()
        symbolic_shape_inference._update_output_from_vi()
        if not all_shapes_inferred:
            onnx.save_model(symbolic_shape_inference.out_mp_, "sym_shape_infer_temp.onnx", save_as_external_data=True)
            raise Exception("Incomplete symbolic shape inference")
        return symbolic_shape_inference.out_mp_


def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument("--input", required=True, help="The input model file")
    parser.add_argument("--output", help="The output model file")
    parser.add_argument(
        "--auto_merge",
        help="Automatically merge symbolic dims when confliction happens",
        action="store_true",
        default=False,
    )
    parser.add_argument(
        "--int_max",
        help="maximum value for integer to be treated as boundless for ops like slice",
        type=int,
        default=2**31 - 1,
    )
    parser.add_argument(
        "--guess_output_rank",
        help="guess output rank to be the same as input 0 for unknown ops",
        action="store_true",
        default=False,
    )
    parser.add_argument(
        "--verbose",
        help="Prints detailed logs of inference, 0: turn off, 1: warnings, 3: detailed",
        type=int,
        default=0,
    )
    parser.add_argument(
        "--save_as_external_data",
        help="Saving an ONNX model to external data",
        action="store_true",
        default=False,
    )
    parser.add_argument(
        "--all_tensors_to_one_file",
        help="Saving all the external data to one file",
        action="store_true",
        default=False,
    )
    parser.add_argument(
        "--external_data_location",
        help="The file location to save the external file",
        default="./",
    )
    parser.add_argument(
        "--external_data_size_threshold",
        help="The size threshold for external data",
        type=int,
        default=1024,
    )
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_arguments()
    logger.info("input model: " + args.input)
    if args.output:
        logger.info("output model " + args.output)
    logger.info("Doing symbolic shape inference...")
    out_mp = SymbolicShapeInference.infer_shapes(
        onnx.load(args.input),
        args.int_max,
        args.auto_merge,
        args.guess_output_rank,
        args.verbose,
    )
    if args.output and out_mp:
        if args.save_as_external_data:
            onnx.save_model(
                out_mp,
                args.output,
                save_as_external_data=True,
                all_tensors_to_one_file=args.all_tensors_to_one_file,
                location=args.external_data_location,
                size_threshold=args.external_data_size_threshold,
                convert_attribute=False,
            )
        else:
            onnx.save(out_mp, args.output)
        logger.info("Done!")