File size: 137,619 Bytes
b75f05d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 |
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# -*- coding: UTF-8 -*-
import argparse
import logging
import numpy as np
import onnx
import sympy
from onnx import helper, numpy_helper, shape_inference
from packaging import version
assert version.parse(onnx.__version__) >= version.parse("1.8.0")
logger = logging.getLogger(__name__)
def get_attribute(node, attr_name, default_value=None):
found = [attr for attr in node.attribute if attr.name == attr_name]
if found:
return helper.get_attribute_value(found[0])
return default_value
def get_dim_from_proto(dim):
return getattr(dim, dim.WhichOneof("value")) if type(dim.WhichOneof("value")) is str else None # noqa: E721
def is_sequence(type_proto):
cls_type = type_proto.WhichOneof("value")
assert cls_type in ["tensor_type", "sequence_type"]
return cls_type == "sequence_type"
def get_shape_from_type_proto(type_proto):
assert not is_sequence(type_proto)
if type_proto.tensor_type.HasField("shape"):
return [get_dim_from_proto(d) for d in type_proto.tensor_type.shape.dim]
else:
return None # note no shape is different from shape without dim (scalar)
def get_elem_type_from_type_proto(type_proto):
if is_sequence(type_proto):
return type_proto.sequence_type.elem_type.tensor_type.elem_type
else:
return type_proto.tensor_type.elem_type
def get_shape_from_value_info(vi):
cls_type = vi.type.WhichOneof("value")
if cls_type is None:
return None
if is_sequence(vi.type):
if vi.type.sequence_type.elem_type.WhichOneof("value") == "tensor_type":
return get_shape_from_type_proto(vi.type.sequence_type.elem_type)
else:
return None
else:
return get_shape_from_type_proto(vi.type)
def make_named_value_info(name):
vi = onnx.ValueInfoProto()
vi.name = name
return vi
def get_shape_from_sympy_shape(sympy_shape):
return [None if i is None else (int(i) if is_literal(i) else str(i)) for i in sympy_shape]
def is_literal(dim):
return type(dim) in [int, np.int64, np.int32, sympy.Integer] or (hasattr(dim, "is_number") and dim.is_number)
def handle_negative_axis(axis, rank):
assert axis < rank and axis >= -rank
return axis if axis >= 0 else rank + axis
def get_opset(mp, domain=None):
domain = domain or ["", "onnx", "ai.onnx"]
if type(domain) != list: # noqa: E721
domain = [domain]
for opset in mp.opset_import:
if opset.domain in domain:
return opset.version
return None
def as_scalar(x):
if type(x) == list: # noqa: E721
assert len(x) == 1
return x[0]
elif type(x) == np.ndarray:
return x.item()
else:
return x
def as_list(x, keep_none):
if type(x) == list: # noqa: E721
return x
elif type(x) == np.ndarray:
return list(x)
elif keep_none and x is None:
return None
else:
return [x]
def sympy_reduce_product(x):
if type(x) == list: # noqa: E721
value = sympy.Integer(1)
for v in x:
value = value * v
else:
value = x
return value
class SymbolicShapeInference:
def __init__(self, int_max, auto_merge, guess_output_rank, verbose, prefix=""):
self.dispatcher_ = {
"Add": self._infer_symbolic_compute_ops,
"ArrayFeatureExtractor": self._infer_ArrayFeatureExtractor,
"AveragePool": self._infer_Pool,
"BatchNormalization": self._infer_BatchNormalization,
"Cast": self._infer_Cast,
"CategoryMapper": self._infer_CategoryMapper,
"Compress": self._infer_Compress,
"Concat": self._infer_Concat,
"ConcatFromSequence": self._infer_ConcatFromSequence,
"Constant": self._infer_Constant,
"ConstantOfShape": self._infer_ConstantOfShape,
"Conv": self._infer_Conv,
"CumSum": self._pass_on_shape_and_type,
"Div": self._infer_symbolic_compute_ops,
"Einsum": self._infer_Einsum,
"Expand": self._infer_Expand,
"Equal": self._infer_symbolic_compute_ops,
"Floor": self._infer_symbolic_compute_ops,
"Gather": self._infer_Gather,
"GatherElements": self._infer_GatherElements,
"GatherND": self._infer_GatherND,
"Identity": self._pass_on_shape_and_type,
"AllReduce": self._pass_on_shape_and_type,
"If": self._infer_If,
"Loop": self._infer_Loop,
"MatMul": self._infer_MatMul,
"MatMulInteger16": self._infer_MatMulInteger,
"MaxPool": self._infer_Pool,
"Max": self._infer_symbolic_compute_ops,
"MemcpyFromHost": self._pass_on_shape_and_type,
"MemcpyToHost": self._pass_on_shape_and_type,
"Min": self._infer_symbolic_compute_ops,
"MoE": self._pass_on_shape_and_type,
"Mul": self._infer_symbolic_compute_ops,
"NonMaxSuppression": self._infer_NonMaxSuppression,
"NonZero": self._infer_NonZero,
"OneHot": self._infer_OneHot,
"Pad": self._infer_Pad,
"Range": self._infer_Range,
"Reciprocal": self._pass_on_shape_and_type,
"ReduceSum": self._infer_ReduceSum,
"ReduceProd": self._infer_ReduceProd,
"Reshape": self._infer_Reshape,
"Resize": self._infer_Resize,
"Round": self._pass_on_shape_and_type,
"Scan": self._infer_Scan,
"ScatterElements": self._infer_ScatterElements,
"SequenceAt": self._infer_SequenceAt,
"SequenceInsert": self._infer_SequenceInsert,
"Shape": self._infer_Shape,
"Size": self._infer_Size,
"Slice": self._infer_Slice,
"SoftmaxCrossEntropyLoss": self._infer_SoftmaxCrossEntropyLoss,
"SoftmaxCrossEntropyLossInternal": self._infer_SoftmaxCrossEntropyLoss,
"NegativeLogLikelihoodLossInternal": self._infer_SoftmaxCrossEntropyLoss,
"Split": self._infer_Split,
"SplitToSequence": self._infer_SplitToSequence,
"Squeeze": self._infer_Squeeze,
"Sub": self._infer_symbolic_compute_ops,
"Tile": self._infer_Tile,
"TopK": self._infer_TopK,
"Transpose": self._infer_Transpose,
"Unsqueeze": self._infer_Unsqueeze,
"Where": self._infer_symbolic_compute_ops,
"ZipMap": self._infer_ZipMap,
"Neg": self._infer_symbolic_compute_ops,
# contrib ops:
"Attention": self._infer_Attention,
"BiasAdd": self._infer_BiasAdd,
"BiasGelu": self._infer_BiasGelu,
"BiasSplitGelu": self._infer_BiasSplitGelu,
"DecoderMaskedMultiHeadAttention": self._infer_DecoderMaskedMultiHeadAttention,
"DequantizeLinear": self._infer_DequantizeLinear,
"EmbedLayerNormalization": self._infer_EmbedLayerNormalization,
"FastGelu": self._infer_FastGelu,
"GatedRelativePositionBias": self._infer_GatedRelativePositionBias,
"Gelu": self._infer_Gelu,
"GemmFastGelu": self._infer_GemmFastGelu,
"GemmFloat8": self._infer_GemmFloat8,
"GroupNorm": self._infer_GroupNorm,
"GroupQueryAttention": self._infer_GroupQueryAttention,
"SkipGroupNorm": self._infer_SkipGroupNorm,
"LayerNormalization": self._infer_LayerNormalization,
"LongformerAttention": self._infer_LongformerAttention,
"MultiHeadAttention": self._infer_MultiHeadAttention,
"NhwcConv": self._infer_NhwcConv,
"PackedAttention": self._infer_PackedAttention,
"PackedMultiHeadAttention": self._infer_PackedMultiHeadAttention,
"PagedAttention": self._infer_PagedAttention,
"PythonOp": self._infer_PythonOp,
"QuantizeLinear": self._infer_QuantizeLinear,
"QuickGelu": self._infer_FastGelu,
"RelativePositionBias": self._infer_RelativePositionBias,
"RemovePadding": self._infer_RemovePadding,
"RestorePadding": self._infer_RestorePadding,
"RotaryEmbedding": self._infer_RotaryEmbedding,
"SimplifiedLayerNormalization": self._infer_LayerNormalization,
"SkipLayerNormalization": self._infer_SkipLayerNormalization,
"SkipSimplifiedLayerNormalization": self._infer_SkipLayerNormalization,
}
self.aten_op_dispatcher_ = {
"embedding": self._infer_Gather,
"bitwise_or": self._infer_aten_bitwise_or,
"diagonal": self._infer_aten_diagonal,
"max_pool2d_with_indices": self._infer_aten_pool2d,
"max": self._infer_aten_minmax,
"min": self._infer_aten_minmax,
"multinomial": self._infer_aten_multinomial,
"unfold": self._infer_aten_unfold,
"argmax": self._infer_aten_argmax,
"avg_pool2d": self._infer_aten_pool2d,
"_adaptive_avg_pool2d": self._infer_aten_pool2d,
"numpy_T": self._infer_Transpose,
"native_group_norm": self._infer_aten_group_norm,
"upsample_nearest1d": self._infer_aten_upsample,
"upsample_nearest2d": self._infer_aten_upsample,
"upsample_nearest3d": self._infer_aten_upsample,
"upsample_bicubic2d": self._infer_aten_upsample,
}
self.run_ = True
self.suggested_merge_ = {}
self.symbolic_dims_ = {}
self.input_symbols_ = {}
self.auto_merge_ = auto_merge
self.guess_output_rank_ = guess_output_rank
self.verbose_ = verbose
self.int_max_ = int_max
self.subgraph_id_ = 0
self.prefix_ = prefix
def _add_suggested_merge(self, symbols, apply=False):
assert all([(type(s) == str and s in self.symbolic_dims_) or is_literal(s) for s in symbols]) # noqa: E721
symbols = set(symbols)
for k, v in self.suggested_merge_.items():
if k in symbols:
symbols.remove(k)
symbols.add(v)
map_to = None
# if there is literal, map to it first
for s in symbols:
if is_literal(s):
map_to = s
break
# when no literals, map to input symbolic dims, then existing symbolic dims
if map_to is None:
for s in symbols:
if s in self.input_symbols_:
map_to = s
break
if map_to is None:
for s in symbols:
if type(self.symbolic_dims_[s]) == sympy.Symbol:
map_to = s
break
# when nothing to map to, use the shorter one
if map_to is None:
if self.verbose_ > 0:
logger.warning("Potential unsafe merge between symbolic expressions: ({})".format(",".join(symbols)))
symbols_list = list(symbols)
lens = [len(s) for s in symbols_list]
map_to = symbols_list[lens.index(min(lens))]
symbols.remove(map_to)
for s in symbols:
if s == map_to:
continue
if is_literal(map_to) and is_literal(s):
assert int(map_to) == int(s)
self.suggested_merge_[s] = int(map_to) if is_literal(map_to) else map_to
for k, v in self.suggested_merge_.items():
if v == s:
self.suggested_merge_[k] = map_to
if apply and self.auto_merge_:
self._apply_suggested_merge()
def _apply_suggested_merge(self, graph_input_only=False):
if not self.suggested_merge_:
return
for i in list(self.out_mp_.graph.input) + ([] if graph_input_only else list(self.out_mp_.graph.value_info)):
for d in i.type.tensor_type.shape.dim:
if d.dim_param in self.suggested_merge_:
v = self.suggested_merge_[d.dim_param]
if is_literal(v):
d.dim_value = int(v)
else:
d.dim_param = v
def _preprocess(self, in_mp):
self.out_mp_ = onnx.ModelProto()
self.out_mp_.CopyFrom(in_mp)
self.graph_inputs_ = {i.name: i for i in list(self.out_mp_.graph.input)}
self.initializers_ = {i.name: i for i in self.out_mp_.graph.initializer}
self.known_vi_ = {i.name: i for i in list(self.out_mp_.graph.input)}
self.known_vi_.update(
{
i.name: helper.make_tensor_value_info(i.name, i.data_type, list(i.dims))
for i in self.out_mp_.graph.initializer
}
)
def _merge_symbols(self, dims):
if not all([type(d) == str for d in dims]): # noqa: E721
if self.auto_merge_:
unique_dims = list(set(dims))
is_int = [is_literal(d) for d in unique_dims]
assert sum(is_int) <= 1 # if there are more than 1 unique ints, something is wrong
if sum(is_int) == 1:
int_dim = is_int.index(1)
if self.verbose_ > 0:
logger.debug(
"dim {} has been merged with value {}".format(
unique_dims[:int_dim] + unique_dims[int_dim + 1 :],
unique_dims[int_dim],
)
)
self._check_merged_dims(unique_dims, allow_broadcast=False)
return unique_dims[int_dim]
else:
if self.verbose_ > 0:
logger.debug(f"dim {unique_dims[1:]} has been merged with dim {unique_dims[0]}")
return dims[0]
else:
return None
if all([d == dims[0] for d in dims]):
return dims[0]
merged = [self.suggested_merge_.get(d, d) for d in dims]
if all([d == merged[0] for d in merged]):
assert merged[0] in self.symbolic_dims_
return merged[0]
else:
return None
# broadcast from right to left, and merge symbolic dims if needed
def _broadcast_shapes(self, shape1, shape2):
new_shape = []
rank1 = len(shape1)
rank2 = len(shape2)
new_rank = max(rank1, rank2)
for i in range(new_rank):
dim1 = shape1[rank1 - 1 - i] if i < rank1 else 1
dim2 = shape2[rank2 - 1 - i] if i < rank2 else 1
if dim1 == 1 or dim1 == dim2:
new_dim = dim2
elif dim2 == 1:
new_dim = dim1
else:
new_dim = self._merge_symbols([dim1, dim2])
if not new_dim:
# warning about unsupported broadcast when not auto merge
# note that auto merge has the risk of incorrectly merge symbols while one of them being 1
# for example, 'a' = 1, 'b' = 5 at runtime is valid broadcasting, but with auto merge 'a' == 'b'
if self.auto_merge_:
self._add_suggested_merge([dim1, dim2], apply=True)
else:
logger.warning("unsupported broadcast between " + str(dim1) + " " + str(dim2))
new_shape = [new_dim, *new_shape]
return new_shape
def _get_shape(self, node, idx):
name = node.input[idx]
if name in self.known_vi_:
vi = self.known_vi_[name]
return get_shape_from_value_info(vi)
else:
assert name in self.initializers_
return list(self.initializers_[name].dims)
def _try_get_shape(self, node, idx):
if idx > len(node.input) - 1:
return None
name = node.input[idx]
if name in self.known_vi_:
vi = self.known_vi_[name]
return get_shape_from_value_info(vi)
if name in self.initializers_:
return list(self.initializers_[name].dims)
return None
def _get_shape_rank(self, node, idx):
return len(self._get_shape(node, idx))
def _get_sympy_shape(self, node, idx):
sympy_shape = []
for d in self._get_shape(node, idx):
if type(d) == str: # noqa: E721
sympy_shape.append(
self.symbolic_dims_[d]
if d in self.symbolic_dims_
else sympy.Symbol(d, integer=True, nonnegative=True)
)
else:
assert None is not d
sympy_shape.append(d)
return sympy_shape
def _get_value(self, node, idx):
name = node.input[idx]
assert name in self.sympy_data_ or name in self.initializers_
return self.sympy_data_[name] if name in self.sympy_data_ else numpy_helper.to_array(self.initializers_[name])
def _try_get_value(self, node, idx):
if idx >= len(node.input):
return None
name = node.input[idx]
if name in self.sympy_data_ or name in self.initializers_:
return self._get_value(node, idx)
return None
def _update_computed_dims(self, new_sympy_shape):
for i, new_dim in enumerate(new_sympy_shape):
if not is_literal(new_dim) and type(new_dim) != str: # noqa: E721
str_dim = str(new_dim)
if str_dim in self.suggested_merge_:
if is_literal(self.suggested_merge_[str_dim]):
continue # no need to create dim for literals
new_sympy_shape[i] = self.symbolic_dims_[self.suggested_merge_[str_dim]]
else:
# add new_dim if it's a computational expression
if str(new_dim) not in self.symbolic_dims_:
self.symbolic_dims_[str(new_dim)] = new_dim
def _onnx_infer_single_node(self, node):
# skip onnx shape inference for some ops, as they are handled in _infer_*
skip_infer = node.op_type in [
"If",
"Loop",
"Scan",
"SplitToSequence",
"ZipMap", # contrib ops
"Attention",
"BiasGelu",
"EmbedLayerNormalization",
"FastGelu",
"Gelu",
"GemmFastGelu",
"LayerNormalization",
"LongformerAttention",
"DequantizeLinear",
"QuantizeLinear",
"RelativePositionBias",
"RemovePadding",
"RestorePadding",
"SimplifiedLayerNormalization",
"SkipLayerNormalization",
"SkipSimplifiedLayerNormalization",
"PackedAttention",
"PagedAttention",
"PythonOp",
"MultiHeadAttention",
"GroupNorm",
"GroupQueryAttention",
"SkipGroupNorm",
"BiasSplitGelu",
"BiasAdd",
"NhwcConv",
"QuickGelu",
"RotaryEmbedding",
]
if not skip_infer:
# Only pass initializers that satisfy the following condition:
# (1) Operator need value of some input for shape inference.
# For example, Unsqueeze in opset 13 uses the axes input to calculate shape of output.
# (2) opset version >= 9. In older version, initializer is required in graph input by onnx spec.
# (3) The initializer is not in graph input. The means the node input is "constant" in inference.
initializers = []
if (get_opset(self.out_mp_) >= 9) and node.op_type in ["Unsqueeze"]:
initializers = [
self.initializers_[name]
for name in node.input
if (name in self.initializers_ and name not in self.graph_inputs_)
]
# run single node inference with self.known_vi_ shapes
tmp_graph = helper.make_graph(
[node],
"tmp",
[self.known_vi_[i] for i in node.input if i],
[make_named_value_info(i) for i in node.output],
initializers,
)
self.tmp_mp_.graph.CopyFrom(tmp_graph)
self.tmp_mp_ = shape_inference.infer_shapes(self.tmp_mp_)
for i_o in range(len(node.output)):
o = node.output[i_o]
if o: # skip optional output
vi = self.out_mp_.graph.value_info.add()
if not skip_infer:
vi.CopyFrom(self.tmp_mp_.graph.output[i_o])
else:
vi.name = o
self.known_vi_[o] = vi
def _onnx_infer_subgraph(self, node, subgraph, use_node_input=True, inc_subgraph_id=True):
if self.verbose_ > 2:
logger.debug(f"Inferencing subgraph of node {node.name} with output({node.output[0]}...): {node.op_type}")
# node inputs are not passed directly to the subgraph
# it's up to the node dispatcher to prepare subgraph input
# for example, with Scan/Loop, subgraph input shape would be trimmed from node input shape
# besides, inputs in subgraph could shadow implicit inputs
subgraph_inputs = {i.name for i in list(subgraph.initializer) + list(subgraph.input)}
subgraph_implicit_input = {name for name in self.known_vi_ if name not in subgraph_inputs}
tmp_graph = helper.make_graph(
list(subgraph.node),
"tmp",
list(subgraph.input) + [self.known_vi_[i] for i in subgraph_implicit_input],
[make_named_value_info(i.name) for i in subgraph.output],
)
tmp_graph.initializer.extend([i for i in self.out_mp_.graph.initializer if i.name in subgraph_implicit_input])
tmp_graph.initializer.extend(subgraph.initializer)
self.tmp_mp_.graph.CopyFrom(tmp_graph)
symbolic_shape_inference = SymbolicShapeInference(
self.int_max_,
self.auto_merge_,
self.guess_output_rank_,
self.verbose_,
prefix=self.prefix_ + "_" + str(self.subgraph_id_),
)
if inc_subgraph_id:
self.subgraph_id_ += 1
symbolic_shape_inference._preprocess(self.tmp_mp_)
symbolic_shape_inference.suggested_merge_ = self.suggested_merge_.copy()
while symbolic_shape_inference.run_:
symbolic_shape_inference._infer_impl(self.sympy_data_.copy())
symbolic_shape_inference._update_output_from_vi()
if use_node_input:
# if subgraph uses node input, it needs to update to merged dims
subgraph.ClearField("input")
subgraph.input.extend(symbolic_shape_inference.out_mp_.graph.input[: len(node.input)])
subgraph.ClearField("output")
subgraph.output.extend(symbolic_shape_inference.out_mp_.graph.output)
subgraph.ClearField("value_info")
subgraph.value_info.extend(symbolic_shape_inference.out_mp_.graph.value_info)
subgraph.ClearField("node")
subgraph.node.extend(symbolic_shape_inference.out_mp_.graph.node)
# for new symbolic dims from subgraph output, add to main graph symbolic dims
subgraph_shapes = [get_shape_from_value_info(o) for o in symbolic_shape_inference.out_mp_.graph.output]
subgraph_new_symbolic_dims = {
d for s in subgraph_shapes if s for d in s if type(d) == str and d not in self.symbolic_dims_ # noqa: E721
}
new_dims = {}
for d in subgraph_new_symbolic_dims:
assert d in symbolic_shape_inference.symbolic_dims_
new_dims[d] = symbolic_shape_inference.symbolic_dims_[d]
self.symbolic_dims_.update(new_dims)
return symbolic_shape_inference
def _get_int_or_float_values(self, node, broadcast=False, allow_float_values=False):
def int_or_float(value, allow_float_values):
# If casting into int has precision loss: keep float output
if allow_float_values and value % 1 != 0:
return value
return int(value)
values = [self._try_get_value(node, i) for i in range(len(node.input))]
if all([v is not None for v in values]):
# some shape compute is in floating point, cast to int for sympy
for i, v in enumerate(values):
if type(v) != np.ndarray:
continue
if len(v.shape) > 1:
new_v = None # ignore value for rank > 1
elif len(v.shape) == 0:
new_v = int_or_float(v.item(), allow_float_values)
else:
assert len(v.shape) == 1
new_v = [int_or_float(vv, allow_float_values) for vv in v]
values[i] = new_v
values_len = [len(v) if isinstance(v, list) else 0 for v in values]
max_len = max(values_len)
if max_len >= 1 and broadcast:
# broadcast
for i, v in enumerate(values):
if v is None:
continue # don't broadcast if value is unknown
if isinstance(v, list):
if len(v) < max_len:
values[i] = v * max_len
else:
assert len(v) == max_len
else:
values[i] = [v] * max_len
return values
def _compute_on_sympy_data(self, node, op_func):
assert len(node.output) == 1
# Before mul & div operations
# cast inputs into interger might lose decimal part and reduce precision
# keep them as float, finish the operation, then cast the result into integer
if node.op_type in ["Mul", "Div"]:
values = self._get_int_or_float_values(node, broadcast=True, allow_float_values=True)
else:
values = self._get_int_or_float_values(node, broadcast=True)
if all([v is not None for v in values]):
is_list = [isinstance(v, list) for v in values]
as_list = any(is_list)
if as_list:
self.sympy_data_[node.output[0]] = [op_func(vs) for vs in zip(*values)]
else:
self.sympy_data_[node.output[0]] = op_func(values)
def _pass_on_sympy_data(self, node):
assert len(node.input) == 1 or node.op_type in [
"Reshape",
"Unsqueeze",
"Squeeze",
]
self._compute_on_sympy_data(node, lambda x: x[0])
def _pass_on_shape_and_type(self, node):
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
get_elem_type_from_type_proto(self.known_vi_[node.input[0]].type),
self._get_shape(node, 0),
)
)
def _new_symbolic_dim(self, prefix, dim):
new_dim = f"{prefix}_d{dim}"
if new_dim in self.suggested_merge_:
v = self.suggested_merge_[new_dim]
new_symbolic_dim = sympy.Integer(int(v)) if is_literal(v) else v
else:
new_symbolic_dim = sympy.Symbol(new_dim, integer=True, nonnegative=True)
self.symbolic_dims_[new_dim] = new_symbolic_dim
return new_symbolic_dim
def _new_symbolic_dim_from_output(self, node, out_idx=0, dim=0):
return self._new_symbolic_dim(
"{}{}_{}_o{}_".format(
node.op_type,
self.prefix_,
list(self.out_mp_.graph.node).index(node),
out_idx,
),
dim,
)
def _new_symbolic_shape(self, rank, node, out_idx=0):
return [self._new_symbolic_dim_from_output(node, out_idx, i) for i in range(rank)]
def _compute_conv_pool_shape(self, node, channels_last=False):
sympy_shape = self._get_sympy_shape(node, 0)
if len(node.input) > 1:
W_shape = self._get_sympy_shape(node, 1) # noqa: N806
rank = len(W_shape) - 2 # number of spatial axes
kernel_shape = W_shape[-rank - 1 : -1] if channels_last else W_shape[-rank:]
sympy_shape[3 if channels_last else 1] = W_shape[0]
else:
W_shape = None # noqa: N806
kernel_shape = get_attribute(node, "kernel_shape")
rank = len(kernel_shape)
assert len(sympy_shape) == rank + 2
# only need to symbolic shape inference if input has symbolic dims in spatial axes
spatial_shape = sympy_shape[-rank - 1 : -1] if channels_last else sympy_shape[-rank:]
is_symbolic_dims = [not is_literal(i) for i in spatial_shape]
if not any(is_symbolic_dims):
shape = get_shape_from_value_info(self.known_vi_[node.output[0]])
if len(shape) > 0:
assert len(sympy_shape) == len(shape)
if channels_last:
sympy_shape[-rank - 1 : -1] = [sympy.Integer(d) for d in shape[-rank - 1 : -1]]
else:
sympy_shape[-rank:] = [sympy.Integer(d) for d in shape[-rank:]]
return sympy_shape
dilations = get_attribute(node, "dilations", [1] * rank)
strides = get_attribute(node, "strides", [1] * rank)
effective_kernel_shape = [(k - 1) * d + 1 for k, d in zip(kernel_shape, dilations)]
pads = get_attribute(node, "pads")
if pads is None:
pads = [0] * (2 * rank)
auto_pad = get_attribute(node, "auto_pad", b"NOTSET").decode("utf-8")
if auto_pad != "VALID" and auto_pad != "NOTSET":
try:
residual = [sympy.Mod(d, s) for d, s in zip(sympy_shape[-rank:], strides)]
total_pads = [
max(0, (k - s) if r == 0 else (k - r))
for k, s, r in zip(effective_kernel_shape, strides, residual)
]
except TypeError: # sympy may throw TypeError: cannot determine truth value of Relational
total_pads = [
max(0, (k - s)) for k, s in zip(effective_kernel_shape, strides)
] # assuming no residual if sympy throws error
elif auto_pad == "VALID":
total_pads = []
else:
total_pads = [0] * rank
else:
assert len(pads) == 2 * rank
total_pads = [p1 + p2 for p1, p2 in zip(pads[:rank], pads[rank:])]
ceil_mode = get_attribute(node, "ceil_mode", 0)
for i in range(rank):
effective_input_size = sympy_shape[-rank + i + (-1 if channels_last else 0)]
if len(total_pads) > 0:
effective_input_size = effective_input_size + total_pads[i]
if ceil_mode:
strided_kernel_positions = sympy.ceiling(
(effective_input_size - effective_kernel_shape[i]) / strides[i]
)
else:
strided_kernel_positions = (effective_input_size - effective_kernel_shape[i]) // strides[i]
sympy_shape[-rank + i + (-1 if channels_last else 0)] = strided_kernel_positions + 1
return sympy_shape
def _check_merged_dims(self, dims, allow_broadcast=True):
if allow_broadcast:
dims = [d for d in dims if not (is_literal(d) and int(d) <= 1)]
if not all([d == dims[0] for d in dims]):
self._add_suggested_merge(dims, apply=True)
def _compute_matmul_shape(self, node, output_dtype=None):
lhs_shape = self._get_shape(node, 0)
rhs_shape = self._get_shape(node, 1)
lhs_rank = len(lhs_shape)
rhs_rank = len(rhs_shape)
lhs_reduce_dim = 0
rhs_reduce_dim = 0
assert lhs_rank > 0 and rhs_rank > 0
if lhs_rank == 1 and rhs_rank == 1:
new_shape = []
elif lhs_rank == 1:
rhs_reduce_dim = -2
new_shape = rhs_shape[:rhs_reduce_dim] + [rhs_shape[-1]]
elif rhs_rank == 1:
lhs_reduce_dim = -1
new_shape = lhs_shape[:lhs_reduce_dim]
else:
lhs_reduce_dim = -1
rhs_reduce_dim = -2
new_shape = [*self._broadcast_shapes(lhs_shape[:-2], rhs_shape[:-2]), lhs_shape[-2], rhs_shape[-1]]
# merge reduce dim
self._check_merged_dims(
[lhs_shape[lhs_reduce_dim], rhs_shape[rhs_reduce_dim]],
allow_broadcast=False,
)
if output_dtype is None:
# infer output_dtype from input type when not specified
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))
def _fuse_tensor_type(self, node, out_idx, dst_type, src_type):
"""
update dst_tensor_type to be compatible with src_tensor_type when dimension mismatches
"""
dst_tensor_type = (
dst_type.sequence_type.elem_type.tensor_type if is_sequence(dst_type) else dst_type.tensor_type
)
src_tensor_type = (
src_type.sequence_type.elem_type.tensor_type if is_sequence(src_type) else src_type.tensor_type
)
if dst_tensor_type.elem_type != src_tensor_type.elem_type:
node_id = node.name if node.name else node.op_type
raise ValueError(
f"For node {node_id}, dst_tensor_type.elem_type != src_tensor_type.elem_type: "
f"{onnx.onnx_pb.TensorProto.DataType.Name(dst_tensor_type.elem_type)} vs "
f"{onnx.onnx_pb.TensorProto.DataType.Name(src_tensor_type.elem_type)}"
)
if dst_tensor_type.HasField("shape"):
for di, ds in enumerate(zip(dst_tensor_type.shape.dim, src_tensor_type.shape.dim)):
if ds[0] != ds[1]:
# create a new symbolic dimension for node/out_idx/mismatch dim id in dst_tensor_type for tensor_type
# for sequence_type, clear the dimension
new_dim = onnx.TensorShapeProto.Dimension()
if not is_sequence(dst_type):
new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, out_idx, di))
dst_tensor_type.shape.dim[di].CopyFrom(new_dim)
else:
dst_tensor_type.CopyFrom(src_tensor_type)
def _infer_ArrayFeatureExtractor(self, node): # noqa: N802
data_shape = self._get_shape(node, 0)
indices_shape = self._get_shape(node, 1)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
data_shape[:-1] + indices_shape,
)
)
def _infer_symbolic_compute_ops(self, node):
funcs = {
"Add": lambda l: l[0] + l[1], # noqa: E741
"Div": lambda l: ( # noqa: E741
int(l[0] // l[1]) if isinstance(l[0] // l[1], float) else l[0] // l[1]
), # integer div in sympy
"Equal": lambda l: l[0] == l[1], # noqa: E741
"Floor": lambda l: sympy.floor(l[0]), # noqa: E741
"Max": lambda l: ( # noqa: E741
l[1]
if is_literal(l[0]) and int(l[0]) < -self.int_max_
else (l[0] if is_literal(l[1]) and int(l[1]) < -self.int_max_ else sympy.Max(l[0], l[1]))
),
"Min": lambda l: ( # noqa: E741
l[1]
if is_literal(l[0]) and int(l[0]) > self.int_max_
else (l[0] if is_literal(l[1]) and int(l[1]) > self.int_max_ else sympy.Min(l[0], l[1]))
),
"Mul": lambda l: int(l[0] * l[1]) if isinstance(l[0] * l[1], float) else l[0] * l[1], # noqa: E741
"Sub": lambda l: l[0] - l[1], # noqa: E741
"Where": lambda l: l[1] if l[0] else l[2], # noqa: E741
"Neg": lambda l: -l[0], # noqa: E741
}
assert node.op_type in funcs
self._compute_on_sympy_data(node, funcs[node.op_type])
def _infer_Cast(self, node): # noqa: N802
self._pass_on_sympy_data(node)
def _infer_CategoryMapper(self, node): # noqa: N802
input_type = self.known_vi_[node.input[0]].type.tensor_type.elem_type
if input_type == onnx.TensorProto.STRING:
output_type = onnx.TensorProto.INT64
else:
output_type = onnx.TensorProto.STRING
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_type, self._get_shape(node, 0)))
def _infer_Compress(self, node): # noqa: N802
input_shape = self._get_shape(node, 0)
# create a new symbolic dimension for Compress output
compress_len = str(self._new_symbolic_dim_from_output(node))
axis = get_attribute(node, "axis")
if axis is None:
# when axis is not specified, input is flattened before compress so output is 1D
output_shape = [compress_len]
else:
output_shape = input_shape
output_shape[handle_negative_axis(axis, len(input_shape))] = compress_len
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
output_shape,
)
)
def _infer_Concat(self, node): # noqa: N802
if any([i in self.sympy_data_ or i in self.initializers_ for i in node.input]):
values = self._get_int_or_float_values(node)
if all([v is not None for v in values]):
assert get_attribute(node, "axis") == 0
self.sympy_data_[node.output[0]] = []
for i in range(len(node.input)):
value = values[i]
if isinstance(value, list):
self.sympy_data_[node.output[0]].extend(value)
else:
self.sympy_data_[node.output[0]].append(value)
sympy_shape = self._get_sympy_shape(node, 0)
axis = handle_negative_axis(get_attribute(node, "axis"), len(sympy_shape))
for i_idx in range(1, len(node.input)):
input_shape = self._get_sympy_shape(node, i_idx)
if input_shape:
sympy_shape[axis] = sympy_shape[axis] + input_shape[axis]
self._update_computed_dims(sympy_shape)
# merge symbolic dims for non-concat axes
for d in range(len(sympy_shape)):
if d == axis:
continue
dims = [self._get_shape(node, i_idx)[d] for i_idx in range(len(node.input)) if self._get_shape(node, i_idx)]
if all([d == dims[0] for d in dims]):
continue
merged = self._merge_symbols(dims)
if type(merged) == str: # noqa: E721
sympy_shape[d] = self.symbolic_dims_[merged] if merged else None
else:
sympy_shape[d] = merged
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(sympy_shape),
)
)
def _infer_ConcatFromSequence(self, node): # noqa: N802
seq_shape = self._get_shape(node, 0)
new_axis = 1 if get_attribute(node, "new_axis") else 0
axis = handle_negative_axis(get_attribute(node, "axis"), len(seq_shape) + new_axis)
concat_dim = str(self._new_symbolic_dim_from_output(node, 0, axis))
new_shape = seq_shape
if new_axis:
new_shape = seq_shape[:axis] + [concat_dim] + seq_shape[axis:]
else:
new_shape[axis] = concat_dim
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.sequence_type.elem_type.tensor_type.elem_type,
new_shape,
)
)
def _infer_Constant(self, node): # noqa: N802
t = get_attribute(node, "value")
self.sympy_data_[node.output[0]] = numpy_helper.to_array(t)
def _infer_ConstantOfShape(self, node): # noqa: N802
sympy_shape = self._get_int_or_float_values(node)[0]
vi = self.known_vi_[node.output[0]]
if sympy_shape is not None:
if type(sympy_shape) != list: # noqa: E721
sympy_shape = [sympy_shape]
self._update_computed_dims(sympy_shape)
# update sympy data if output type is int, and shape is known
if vi.type.tensor_type.elem_type == onnx.TensorProto.INT64 and all([is_literal(x) for x in sympy_shape]):
self.sympy_data_[node.output[0]] = np.ones(
[int(x) for x in sympy_shape], dtype=np.int64
) * numpy_helper.to_array(get_attribute(node, "value", 0))
else:
# create new dynamic shape
# note input0 is a 1D vector of shape, the new symbolic shape has the rank of the shape vector length
sympy_shape = self._new_symbolic_shape(self._get_shape(node, 0)[0], node)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(sympy_shape),
)
)
def _infer_Conv(self, node): # noqa: N802
sympy_shape = self._compute_conv_pool_shape(node)
self._update_computed_dims(sympy_shape)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(sympy_shape),
)
)
def _infer_NhwcConv(self, node): # noqa: N802
sympy_shape = self._compute_conv_pool_shape(node, channels_last=True)
self._update_computed_dims(sympy_shape)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(sympy_shape),
)
)
def _infer_DequantizeLinear(self, node): # noqa: N802
# Get the output data type from the scale input (index 1, required).
output_dtype = self.known_vi_[node.input[1]].type.tensor_type.elem_type
# Get the output shape from the first input.
output_shape = self._get_shape(node, 0)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
def _infer_QuantizeLinear(self, node): # noqa: N802
# Get the output data type from the zero-point input (index 2, optional).
# Otherwise, default to uint8
output_dtype = onnx.TensorProto.UINT8
if len(node.input) > 2 and node.input[2]:
output_dtype = self.known_vi_[node.input[2]].type.tensor_type.elem_type
# Get the output shape from the first input.
output_shape = self._get_shape(node, 0)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
def _infer_Einsum(self, node): # noqa: N802
# ref:https://github.com/onnx/onnx/blob/623dfaa0151b2e4ce49779c3ec31cbd78c592b80/onnx/defs/math/defs.cc#L3275
equation = get_attribute(node, "equation")
equation = equation.replace(b" ", b"")
mid_index = equation.find(b"->")
left_equation = equation[:mid_index] if mid_index != -1 else equation
num_operands = 0
num_ellipsis = 0
num_ellipsis_indices = 0
letter_to_dim = {}
terms = left_equation.split(b",")
for term in terms:
ellipsis_index = term.find(b"...")
shape = self._get_shape(node, num_operands)
rank = len(shape)
if ellipsis_index != -1:
if num_ellipsis == 0:
num_ellipsis_indices = rank - len(term) + 3
num_ellipsis = num_ellipsis + 1
for i in range(1, rank + 1):
letter = term[-i]
if letter != 46: # letter != b'.'
dim = shape[-i]
if letter not in letter_to_dim:
letter_to_dim[letter] = dim
elif type(dim) != sympy.Symbol:
letter_to_dim[letter] = dim
num_operands = num_operands + 1
new_sympy_shape = []
from collections import OrderedDict
num_letter_occurrences = OrderedDict()
if mid_index != -1:
right_equation = equation[mid_index + 2 :]
right_ellipsis_index = right_equation.find(b"...")
if right_ellipsis_index != -1:
for i in range(num_ellipsis_indices):
new_sympy_shape.append(shape[i])
for c in right_equation:
if c != 46: # c != b'.'
new_sympy_shape.append(letter_to_dim[c])
else:
for i in range(num_ellipsis_indices):
new_sympy_shape.append(shape[i])
for c in left_equation:
if c != 44 and c != 46: # c != b',' and c != b'.':
if c in num_letter_occurrences:
num_letter_occurrences[c] = num_letter_occurrences[c] + 1
else:
num_letter_occurrences[c] = 1
for key, value in num_letter_occurrences.items():
if value == 1:
new_sympy_shape.append(letter_to_dim[key])
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_sympy_shape))
def _infer_Expand(self, node): # noqa: N802
expand_to_shape = as_list(self._try_get_value(node, 1), keep_none=True)
if expand_to_shape is not None:
# new_shape's dim can come from shape value
self._update_computed_dims(expand_to_shape)
shape = self._get_shape(node, 0)
new_shape = self._broadcast_shapes(shape, get_shape_from_sympy_shape(expand_to_shape))
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
new_shape,
)
)
def _infer_Gather(self, node): # noqa: N802
data_shape = self._get_shape(node, 0)
axis = handle_negative_axis(get_attribute(node, "axis", 0), len(data_shape))
indices_shape = self._get_shape(node, 1)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
data_shape[:axis] + indices_shape + data_shape[axis + 1 :],
)
)
# for 1D input, do some sympy compute
if node.input[0] in self.sympy_data_ and len(data_shape) == 1 and get_attribute(node, "axis", 0) == 0:
idx = self._try_get_value(node, 1)
if idx is not None:
data = self.sympy_data_[node.input[0]]
if type(data) == list: # noqa: E721
if type(idx) == np.ndarray and len(idx.shape) == 1:
self.sympy_data_[node.output[0]] = [data[int(i)] for i in idx]
else:
self.sympy_data_[node.output[0]] = data[int(idx)]
else:
assert idx == 0 or idx == -1
self.sympy_data_[node.output[0]] = data
def _infer_GatherElements(self, node): # noqa: N802
indices_shape = self._get_shape(node, 1)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
indices_shape,
)
)
def _infer_GatherND(self, node): # noqa: N802
data_shape = self._get_shape(node, 0)
data_rank = len(data_shape)
indices_shape = self._get_shape(node, 1)
len(indices_shape)
last_index_dimension = indices_shape[-1]
assert is_literal(last_index_dimension) and last_index_dimension <= data_rank
new_shape = indices_shape[:-1] + data_shape[last_index_dimension:]
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
new_shape,
)
)
def _infer_If(self, node): # noqa: N802
# special case for constant condition, in case there are mismatching shape from the non-executed branch
subgraphs = [
get_attribute(node, "then_branch"),
get_attribute(node, "else_branch"),
]
cond = self._try_get_value(node, 0)
if cond is not None:
if as_scalar(cond) > 0:
subgraphs[1].CopyFrom(subgraphs[0])
else:
subgraphs[0].CopyFrom(subgraphs[1])
for i_sub, subgraph in enumerate(subgraphs):
subgraph_infer = self._onnx_infer_subgraph(node, subgraph, use_node_input=False)
for i_out in range(len(node.output)):
vi = self.known_vi_[node.output[i_out]]
if i_sub == 0:
vi.CopyFrom(subgraph.output[i_out])
vi.name = node.output[i_out]
else:
self._fuse_tensor_type(node, i_out, vi.type, subgraph.output[i_out].type)
# pass on sympy data from subgraph, if cond is constant
if cond is not None and i_sub == (0 if as_scalar(cond) > 0 else 1):
if subgraph.output[i_out].name in subgraph_infer.sympy_data_:
self.sympy_data_[vi.name] = subgraph_infer.sympy_data_[subgraph.output[i_out].name]
def _infer_Loop(self, node): # noqa: N802
subgraph = get_attribute(node, "body")
assert len(subgraph.input) == len(node.input)
num_loop_carried = len(node.input) - 2 # minus the length and initial loop condition
# when sequence_type is used as loop carried input
# needs to run subgraph infer twice if the tensor shape in sequence contains None
for i, si in enumerate(subgraph.input):
si_name = si.name
si.CopyFrom(self.known_vi_[node.input[i]])
si.name = si_name
self._onnx_infer_subgraph(node, subgraph)
# check subgraph input/output for shape changes in loop carried variables
# for tensor_type, create new symbolic dim when changing, i.e., output = Concat(input, a)
# for sequence_type, propagate from output to input
need_second_infer = False
for i_out in range(1, num_loop_carried + 1):
so = subgraph.output[i_out]
so_shape = get_shape_from_value_info(so)
if is_sequence(so.type):
if so_shape and None in so_shape:
# copy shape from output to input
# note that loop input is [loop_len, cond, input_0, input_1, ...]
# while loop output is [cond, output_0, output_1, ...]
subgraph.input[i_out + 1].type.sequence_type.elem_type.CopyFrom(so.type.sequence_type.elem_type)
need_second_infer = True
else:
si = subgraph.input[i_out + 1]
si_shape = get_shape_from_value_info(si)
for di, dims in enumerate(zip(si_shape, so_shape)):
if dims[0] != dims[1]:
new_dim = onnx.TensorShapeProto.Dimension()
new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, i_out, di))
si.type.tensor_type.shape.dim[di].CopyFrom(new_dim)
so.type.tensor_type.shape.dim[di].CopyFrom(new_dim)
need_second_infer = True
if need_second_infer:
if self.verbose_ > 2:
logger.debug(
"Rerun Loop: {}({}...), because of sequence in loop carried variables".format(
node.name, node.output[0]
)
)
self._onnx_infer_subgraph(node, subgraph, inc_subgraph_id=False)
# create a new symbolic dimension for iteration dependent dimension
loop_iter_dim = str(self._new_symbolic_dim_from_output(node))
for i in range(len(node.output)):
vi = self.known_vi_[node.output[i]]
vi.CopyFrom(subgraph.output[i + 1]) # first subgraph output is condition, not in node output
if i >= num_loop_carried:
assert not is_sequence(vi.type) # TODO: handle loop accumulation in sequence_type
subgraph_vi_dim = subgraph.output[i + 1].type.tensor_type.shape.dim
vi.type.tensor_type.shape.ClearField("dim")
vi_dim = vi.type.tensor_type.shape.dim
vi_dim.add().dim_param = loop_iter_dim
vi_dim.extend(list(subgraph_vi_dim))
vi.name = node.output[i]
def _infer_MatMul(self, node): # noqa: N802
self._compute_matmul_shape(node)
def _infer_MatMulInteger(self, node): # noqa: N802
self._compute_matmul_shape(node, onnx.TensorProto.INT32)
def _infer_NonMaxSuppression(self, node): # noqa: N802
selected = str(self._new_symbolic_dim_from_output(node))
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, [selected, 3]))
def _infer_NonZero(self, node): # noqa: N802
input_rank = self._get_shape_rank(node, 0)
# create a new symbolic dimension for NonZero output
nz_len = str(self._new_symbolic_dim_from_output(node, 0, 1))
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], vi.type.tensor_type.elem_type, [input_rank, nz_len]))
def _infer_OneHot(self, node): # noqa: N802
sympy_shape = self._get_sympy_shape(node, 0)
depth = self._try_get_value(node, 1)
axis = get_attribute(node, "axis", -1)
axis = handle_negative_axis(axis, len(sympy_shape) + 1)
new_shape = get_shape_from_sympy_shape(
sympy_shape[:axis]
+ [self._new_symbolic_dim_from_output(node) if not is_literal(depth) else depth]
+ sympy_shape[axis:]
)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[2]].type.tensor_type.elem_type,
new_shape,
)
)
def _infer_Pad(self, node): # noqa: N802
if get_opset(self.out_mp_) <= 10:
pads = get_attribute(node, "pads")
else:
pads = self._try_get_value(node, 1)
sympy_shape = self._get_sympy_shape(node, 0)
rank = len(sympy_shape)
if pads is not None:
assert len(pads) == 2 * rank
new_sympy_shape = [
d + pad_up + pad_down for d, pad_up, pad_down in zip(sympy_shape, pads[:rank], pads[rank:])
]
self._update_computed_dims(new_sympy_shape)
else:
# dynamic pads, create new symbolic dimensions
new_sympy_shape = self._new_symbolic_shape(rank, node)
output_tp = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[0], output_tp, get_shape_from_sympy_shape(new_sympy_shape))
)
def _infer_Pool(self, node): # noqa: N802
sympy_shape = self._compute_conv_pool_shape(node)
self._update_computed_dims(sympy_shape)
for o in node.output:
if not o:
continue
vi = self.known_vi_[o]
vi.CopyFrom(
helper.make_tensor_value_info(
o,
vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(sympy_shape),
)
)
def _infer_aten_bitwise_or(self, node):
shape0 = self._get_shape(node, 0)
shape1 = self._get_shape(node, 1)
new_shape = self._broadcast_shapes(shape0, shape1)
t0 = self.known_vi_[node.input[0]]
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], t0.type.tensor_type.elem_type, new_shape))
def _infer_aten_diagonal(self, node):
sympy_shape = self._get_sympy_shape(node, 0)
rank = len(sympy_shape)
offset = self._try_get_value(node, 1)
dim1 = self._try_get_value(node, 2)
dim2 = self._try_get_value(node, 3)
assert offset is not None and dim1 is not None and dim2 is not None
dim1 = handle_negative_axis(dim1, rank)
dim2 = handle_negative_axis(dim2, rank)
new_shape = []
for dim, val in enumerate(sympy_shape):
if dim not in [dim1, dim2]:
new_shape.append(val)
shape1 = sympy_shape[dim1]
shape2 = sympy_shape[dim2]
if offset >= 0:
diag_shape = sympy.Max(0, sympy.Min(shape1, shape2 - offset))
else:
diag_shape = sympy.Max(0, sympy.Min(shape1 + offset, shape2))
new_shape.append(diag_shape)
if node.output[0]:
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_shape),
)
)
def _infer_aten_multinomial(self, node):
sympy_shape = self._get_sympy_shape(node, 0)
rank = len(sympy_shape)
assert rank in [1, 2]
num_samples = self._try_get_value(node, 1)
di = rank - 1
last_dim = num_samples if num_samples else str(self._new_symbolic_dim_from_output(node, 0, di))
output_shape = sympy_shape[:-1] + [last_dim]
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
onnx.TensorProto.INT64,
get_shape_from_sympy_shape(output_shape),
)
)
def _infer_aten_pool2d(self, node):
sympy_shape = self._get_sympy_shape(node, 0)
assert len(sympy_shape) == 4
sympy_shape[-2:] = [self._new_symbolic_dim_from_output(node, 0, i) for i in [2, 3]]
self._update_computed_dims(sympy_shape)
for i, o in enumerate(node.output):
if not o:
continue
vi = self.known_vi_[o]
elem_type = onnx.TensorProto.INT64 if i == 1 else self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi.CopyFrom(helper.make_tensor_value_info(o, elem_type, get_shape_from_sympy_shape(sympy_shape)))
def _infer_aten_minmax(self, node):
vi = self.known_vi_[node.output[0]]
if len(node.input) == 1:
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], self.known_vi_[node.input[0]].type.tensor_type.elem_type, []
)
)
else:
assert len(node.input) == 3
keepdim = self._try_get_value(node, 2)
assert keepdim is not None # can only handle known keepdim case.
dim = self._try_get_value(node, 1)
if dim is None:
rank = self._get_shape_rank(node, 0)
output_shape = self._new_symbolic_shape(rank if keepdim else rank - 1, node)
else:
shape = self._get_sympy_shape(node, 0)
dim = handle_negative_axis(dim, len(shape))
output_shape = shape[:dim]
if keepdim:
output_shape += [1]
output_shape += shape[dim + 1 :]
output_shape = get_shape_from_sympy_shape(output_shape)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0], self.known_vi_[node.input[0]].type.tensor_type.elem_type, output_shape
)
)
vi1 = self.known_vi_[node.output[1]]
vi1.CopyFrom(helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT64, output_shape))
def _infer_aten_unfold(self, node):
sympy_shape = self._get_sympy_shape(node, 0)
dimension = self._try_get_value(node, 1)
size = self._try_get_value(node, 2)
step = self._try_get_value(node, 3)
if dimension is not None and size is not None and step is not None:
assert dimension < len(sympy_shape)
sympy_shape[dimension] = (sympy_shape[dimension] - size) // step + 1
sympy_shape.append(size)
else:
rank = len(sympy_shape)
sympy_shape = self._new_symbolic_shape(rank + 1, node)
self._update_computed_dims(sympy_shape)
if node.output[0]:
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(sympy_shape),
)
)
def _infer_aten_argmax(self, node):
new_shape = None
if not node.input[1]:
# The argmax of the flattened input is returned.
new_shape = []
else:
dim = self._try_get_value(node, 1)
keepdim = self._try_get_value(node, 2)
if keepdim is not None:
sympy_shape = self._get_sympy_shape(node, 0)
if dim is not None:
dim = handle_negative_axis(dim, len(sympy_shape))
if keepdim:
sympy_shape[dim] = 1
else:
del sympy_shape[dim]
else:
rank = len(sympy_shape)
sympy_shape = self._new_symbolic_shape(rank if keepdim else rank - 1, node)
self._update_computed_dims(sympy_shape)
new_shape = get_shape_from_sympy_shape(sympy_shape)
if node.output[0] and new_shape is not None:
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, new_shape))
def _infer_aten_group_norm(self, node):
self._propagate_shape_and_type(node)
input_shape = self._get_shape(node, 0)
N = input_shape[0] if input_shape is not None and len(input_shape) != 0 else None # noqa: N806
group = self._try_get_value(node, 6)
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
for i in [1, 2]:
if node.output[i]:
vi = self.known_vi_[node.output[i]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[i],
output_dtype,
[
N if N is not None else str(self._new_symbolic_dim_from_output(node, i, 0)),
(
as_scalar(group)
if group is not None
else str(self._new_symbolic_dim_from_output(node, i, 1))
),
],
)
)
def _infer_aten_upsample(self, node):
new_shape = None
input_shape = self._get_shape(node, 0)
if input_shape is not None:
new_shape = input_shape[:2]
output_size = self._try_get_value(node, 1)
if output_size is not None:
new_shape += [dim_size.item() if type(dim_size) == np.int64 else dim_size for dim_size in output_size]
else:
rank = len(input_shape)
new_shape += [str(self._new_symbolic_dim_from_output(node, 0, i)) for i in range(2, rank)]
if node.output[0] and new_shape is not None:
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))
def _infer_BatchNormalization(self, node): # noqa: N802
self._propagate_shape_and_type(node)
# this works for opsets < 14 and 14 since we check i < len(node.output) in the loop
for i in [1, 2, 3, 4]:
if i < len(node.output) and node.output[i]:
# all of these parameters have the same shape as the 1st input
self._propagate_shape_and_type(node, input_index=1, output_index=i)
def _infer_Range(self, node): # noqa: N802
vi = self.known_vi_[node.output[0]]
input_data = self._get_int_or_float_values(node)
if all([i is not None for i in input_data]):
start = as_scalar(input_data[0])
limit = as_scalar(input_data[1])
delta = as_scalar(input_data[2])
new_sympy_shape = [sympy.Max(sympy.ceiling((limit - start) / delta), 0)]
else:
new_sympy_shape = [self._new_symbolic_dim_from_output(node)]
self._update_computed_dims(new_sympy_shape)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape),
)
)
def _infer_ReduceSum(self, node): # noqa: N802
keep_dims = get_attribute(node, "keepdims", 1)
if get_opset(self.out_mp_) >= 13 and len(node.input) > 1:
# ReduceSum changes axes to input[1] in opset 13
axes = self._try_get_value(node, 1)
vi = self.known_vi_[node.output[0]]
if axes is None:
assert keep_dims # can only handle keep_dims==True when axes is unknown, by generating new ranks
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(self._new_symbolic_shape(self._get_shape_rank(node, 0), node)),
)
)
else:
shape = self._get_shape(node, 0)
output_shape = []
axes = [handle_negative_axis(a, len(shape)) for a in axes]
for i, d in enumerate(shape):
if i in axes:
if keep_dims:
output_shape.append(1)
else:
output_shape.append(d)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
output_shape,
)
)
def _infer_ReduceProd(self, node): # noqa: N802
axes = get_attribute(node, "axes")
keep_dims = get_attribute(node, "keepdims", 1)
if keep_dims == 0 and axes == [0]:
data = self._get_int_or_float_values(node)[0]
if data is not None:
self.sympy_data_[node.output[0]] = sympy_reduce_product(data)
def _infer_RelativePositionBias(self, node): # noqa: N802
seq_len = self._try_get_value(node, 1)
real_seq_len = self._try_get_value(node, 2)
if seq_len is None or real_seq_len is None:
return
num_heads = self._get_sympy_shape(node, 0)[1]
new_shape = [1, num_heads, str(seq_len), str(real_seq_len)]
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, new_shape))
def _infer_Reshape(self, node): # noqa: N802
shape_value = self._try_get_value(node, 1)
vi = self.known_vi_[node.output[0]]
if shape_value is None:
shape_shape = self._get_shape(node, 1)
assert len(shape_shape) == 1
shape_rank = shape_shape[0]
assert is_literal(shape_rank)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(self._new_symbolic_shape(shape_rank, node)),
)
)
else:
input_sympy_shape = self._get_sympy_shape(node, 0)
total = 1
for d in input_sympy_shape:
total = total * d
new_sympy_shape = []
deferred_dim_idx = -1
non_deferred_size = 1
for i, d in enumerate(shape_value):
if type(d) == sympy.Symbol:
new_sympy_shape.append(d)
elif d == 0:
new_sympy_shape.append(input_sympy_shape[i])
non_deferred_size = non_deferred_size * input_sympy_shape[i]
else:
new_sympy_shape.append(d)
if d == -1:
deferred_dim_idx = i
elif d != 0:
non_deferred_size = non_deferred_size * d
assert new_sympy_shape.count(-1) < 2
if -1 in new_sympy_shape:
new_dim = total // non_deferred_size
new_sympy_shape[deferred_dim_idx] = new_dim
self._update_computed_dims(new_sympy_shape)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape),
)
)
self._pass_on_sympy_data(node)
def _infer_Resize(self, node): # noqa: N802
vi = self.known_vi_[node.output[0]]
input_sympy_shape = self._get_sympy_shape(node, 0)
if get_opset(self.out_mp_) <= 10:
scales = self._try_get_value(node, 1)
if scales is not None:
new_sympy_shape = [sympy.simplify(sympy.floor(d * s)) for d, s in zip(input_sympy_shape, scales)]
self._update_computed_dims(new_sympy_shape)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape),
)
)
else:
roi = self._try_get_value(node, 1)
scales = self._try_get_value(node, 2)
sizes = self._try_get_value(node, 3)
if sizes is not None:
new_sympy_shape = [sympy.simplify(sympy.floor(s)) for s in sizes]
self._update_computed_dims(new_sympy_shape)
elif scales is not None:
rank = len(scales)
if get_attribute(node, "coordinate_transformation_mode") == "tf_crop_and_resize":
assert len(roi) == 2 * rank
roi_start = list(roi)[:rank]
roi_end = list(roi)[rank:]
else:
roi_start = [0] * rank
roi_end = [1] * rank
scales = list(scales)
new_sympy_shape = [
sympy.simplify(sympy.floor(d * (end - start) * scale))
for d, start, end, scale in zip(input_sympy_shape, roi_start, roi_end, scales)
]
self._update_computed_dims(new_sympy_shape)
else:
new_sympy_shape = self._new_symbolic_shape(self._get_shape_rank(node, 0), node)
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape),
)
)
def _infer_Scan(self, node): # noqa: N802
subgraph = get_attribute(node, "body")
num_scan_inputs = get_attribute(node, "num_scan_inputs")
scan_input_axes = get_attribute(node, "scan_input_axes", [0] * num_scan_inputs)
num_scan_states = len(node.input) - num_scan_inputs
scan_input_axes = [
handle_negative_axis(ax, self._get_shape_rank(node, i + num_scan_states))
for i, ax in enumerate(scan_input_axes)
]
# We may have cases where the subgraph has optional inputs that appear in both subgraph's input and initializer,
# but not in the node's input. In such cases, the input model might be invalid, but let's skip those optional inputs.
assert len(subgraph.input) >= len(node.input)
subgraph_inputs = subgraph.input[: len(node.input)]
for i, si in enumerate(subgraph_inputs):
subgraph_name = si.name
si.CopyFrom(self.known_vi_[node.input[i]])
if i >= num_scan_states:
scan_input_dim = si.type.tensor_type.shape.dim
scan_input_dim.remove(scan_input_dim[scan_input_axes[i - num_scan_states]])
si.name = subgraph_name
self._onnx_infer_subgraph(node, subgraph)
num_scan_outputs = len(node.output) - num_scan_states
scan_output_axes = get_attribute(node, "scan_output_axes", [0] * num_scan_outputs)
scan_input_dim = get_shape_from_type_proto(self.known_vi_[node.input[-1]].type)[scan_input_axes[-1]]
for i, o in enumerate(node.output):
vi = self.known_vi_[o]
if i >= num_scan_states:
shape = get_shape_from_type_proto(subgraph.output[i].type)
new_dim = handle_negative_axis(scan_output_axes[i - num_scan_states], len(shape) + 1)
shape = shape[:new_dim] + [scan_input_dim] + shape[new_dim:]
vi.CopyFrom(helper.make_tensor_value_info(o, subgraph.output[i].type.tensor_type.elem_type, shape))
else:
vi.CopyFrom(subgraph.output[i])
vi.name = o
def _infer_ScatterElements(self, node): # noqa: N802
data_shape = self._get_shape(node, 0)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
data_shape,
)
)
def _infer_SequenceAt(self, node): # noqa: N802
# need to create new symbolic dimension if sequence shape has None:
seq_shape = self._get_shape(node, 0)
vi = self.known_vi_[node.output[0]]
if seq_shape is not None:
for di, d in enumerate(seq_shape):
if d is not None:
continue
new_dim = onnx.TensorShapeProto.Dimension()
new_dim.dim_param = str(self._new_symbolic_dim_from_output(node, 0, di))
vi.type.tensor_type.shape.dim[di].CopyFrom(new_dim)
def _infer_SequenceInsert(self, node): # noqa: N802
# workaround bug in onnx's shape inference
vi_seq = self.known_vi_[node.input[0]]
vi_tensor = self.known_vi_[node.input[1]]
vi_out_seq = self.known_vi_[node.output[0]]
vi_out_seq.CopyFrom(vi_seq)
vi_out_seq.name = node.output[0]
self._fuse_tensor_type(node, 0, vi_out_seq.type, vi_tensor.type)
def _infer_Shape(self, node): # noqa: N802
self.sympy_data_[node.output[0]] = self._get_sympy_shape(node, 0)
def _infer_Size(self, node): # noqa: N802
sympy_shape = self._get_sympy_shape(node, 0)
self.sympy_data_[node.output[0]] = sympy_reduce_product(sympy_shape)
self.known_vi_[node.output[0]].CopyFrom(
helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, [])
)
def _infer_Slice(self, node): # noqa: N802
# SymPy fails to prove that `x_0 + ... + x_n >= 0` if one of `x_i` is a `sympy.Min(a, b)`,
# even when the relation holds for both `a` and `b`.
#
# When given `expr` of form `min(a, b) + ...`, this function returns `[a + ..., b + ...]`,
# so that we can prove inequalities for both expressions separately.
#
# If the number of `min(...)` subexpressions is not exactly one, this function just returns `[expr]`.
def flatten_min(expr):
assert isinstance(expr, sympy.Add), f"Expected a sum of two arguments, got {expr}"
min_positions = [idx for idx in range(len(expr.args)) if isinstance(expr.args[idx], sympy.Min)]
if len(min_positions) == 1:
min_pos = min_positions[0]
def replace_min_with_arg(arg_idx):
replaced = list(expr.args)
assert isinstance(
replaced[min_pos], sympy.Min
), f"Expected a sympy.Min() at position {min_pos}, got {replaced[min_pos]}"
assert (
len(replaced[min_pos].args) == 2
), f"Expected a sympy.Min() with exactly 2 arguments, got {replaced[min_pos]}"
replaced[min_pos] = replaced[min_pos].args[arg_idx]
return sympy.Add(*replaced)
return [
replace_min_with_arg(0),
replace_min_with_arg(1),
]
return [expr]
def less_equal(x, y):
try:
return bool(x <= y)
except TypeError:
pass
try:
return bool(y >= x)
except TypeError:
pass
try:
return bool(-x >= -y)
except TypeError:
pass
try:
return bool(-y <= -x)
except TypeError:
pass
try:
return bool(y - x >= 0)
except TypeError:
# the last attempt; this may raise TypeError
return all(bool(d >= 0) for d in flatten_min(y - x))
def handle_negative_index(index, bound):
"""normalizes a negative index to be in [0, bound)"""
try:
if not less_equal(0, index):
if is_literal(index) and index <= -self.int_max_:
# this case is handled separately
return index
return bound + index
except TypeError:
logger.warning(f"Cannot determine if {index} < 0")
return index
if get_opset(self.out_mp_) <= 9:
axes = get_attribute(node, "axes")
starts = get_attribute(node, "starts")
ends = get_attribute(node, "ends")
if not axes:
axes = list(range(len(starts)))
steps = [1] * len(axes)
else:
starts = as_list(self._try_get_value(node, 1), keep_none=True)
ends = as_list(self._try_get_value(node, 2), keep_none=True)
axes = self._try_get_value(node, 3)
steps = self._try_get_value(node, 4)
if axes is None and not (starts is None and ends is None):
axes = list(range(0, len(starts if starts is not None else ends)))
if steps is None and not (starts is None and ends is None):
steps = [1] * len(starts if starts is not None else ends)
axes = as_list(axes, keep_none=True)
steps = as_list(steps, keep_none=True)
new_sympy_shape = self._get_sympy_shape(node, 0)
if starts is None or ends is None:
if axes is None:
for i in range(len(new_sympy_shape)):
new_sympy_shape[i] = self._new_symbolic_dim_from_output(node, 0, i)
else:
new_sympy_shape = get_shape_from_sympy_shape(new_sympy_shape)
for i in axes:
new_sympy_shape[i] = self._new_symbolic_dim_from_output(node, 0, i)
else:
for i, s, e, t in zip(axes, starts, ends, steps):
e = handle_negative_index(e, new_sympy_shape[i]) # noqa: PLW2901
if is_literal(e):
if e >= self.int_max_:
e = new_sympy_shape[i] # noqa: PLW2901
elif e <= -self.int_max_:
e = 0 if s > 0 else -1 # noqa: PLW2901
elif is_literal(new_sympy_shape[i]):
if e < 0:
e = max(0, e + new_sympy_shape[i]) # noqa: PLW2901
e = min(e, new_sympy_shape[i]) # noqa: PLW2901
else:
if e > 0:
e = ( # noqa: PLW2901
sympy.Min(e, new_sympy_shape[i]) if e > 1 else e
) # special case for slicing first to make computation easier
else:
if is_literal(new_sympy_shape[i]):
e = sympy.Min(e, new_sympy_shape[i]) # noqa: PLW2901
else:
try:
if not less_equal(e, new_sympy_shape[i]):
e = new_sympy_shape[i] # noqa: PLW2901
except Exception:
logger.warning(f"Unable to determine if {e} <= {new_sympy_shape[i]}, treat as equal")
e = new_sympy_shape[i] # noqa: PLW2901
s = handle_negative_index(s, new_sympy_shape[i]) # noqa: PLW2901
if is_literal(new_sympy_shape[i]) and is_literal(s):
s = max(0, min(s, new_sympy_shape[i])) # noqa: PLW2901
new_sympy_shape[i] = sympy.simplify((e - s + t + (-1 if t > 0 else 1)) // t)
self._update_computed_dims(new_sympy_shape)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape),
)
)
# handle sympy_data if needed, for slice in shape computation
if (
node.input[0] in self.sympy_data_
and [0] == axes
and starts is not None
and len(starts) == 1
and ends is not None
and len(ends) == 1
and steps is not None
and len(steps) == 1
):
input_sympy_data = self.sympy_data_[node.input[0]]
if type(input_sympy_data) == list or ( # noqa: E721
type(input_sympy_data) == np.array and len(input_sympy_data.shape) == 1
):
self.sympy_data_[node.output[0]] = input_sympy_data[starts[0] : ends[0] : steps[0]]
def _infer_SoftmaxCrossEntropyLoss(self, node): # noqa: N802
vi = self.known_vi_[node.output[0]]
elem_type = self.known_vi_[node.input[0]].type.tensor_type.elem_type
# If output type is explicit specified in attribute, we use it as output tensor type.
specified_output_type = get_attribute(node, "output_type", None)
if specified_output_type is not None:
elem_type = specified_output_type
vi.type.tensor_type.elem_type = elem_type
vi.type.tensor_type.shape.CopyFrom(onnx.TensorShapeProto())
if len(node.output) > 1:
data_shape = self._get_shape(node, 0)
vi = self.known_vi_[node.output[1]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, elem_type, data_shape))
def _infer_Split_Common(self, node, make_value_info_func): # noqa: N802
input_sympy_shape = self._get_sympy_shape(node, 0)
axis = handle_negative_axis(get_attribute(node, "axis", 0), len(input_sympy_shape))
op_set = get_opset(self.out_mp_)
# Depending on op-version 'split' are provided as attribute or via 2nd input
if op_set < 13:
split = get_attribute(node, "split")
assert self._try_get_value(node, 1) is None
else:
split = self._try_get_value(node, 1)
assert get_attribute(node, "split") is None
if split is None:
num_outputs = len(node.output)
split = [input_sympy_shape[axis] / sympy.Integer(num_outputs)] * num_outputs
self._update_computed_dims(split)
else:
split = [sympy.Integer(s) for s in split]
for i_o in range(len(split)):
vi = self.known_vi_[node.output[i_o]]
vi.CopyFrom(
make_value_info_func(
node.output[i_o],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
get_shape_from_sympy_shape(input_sympy_shape[:axis] + [split[i_o]] + input_sympy_shape[axis + 1 :]),
)
)
self.known_vi_[vi.name] = vi
def _infer_Split(self, node): # noqa: N802
self._infer_Split_Common(node, helper.make_tensor_value_info)
def _infer_SplitToSequence(self, node): # noqa: N802
self._infer_Split_Common(node, helper.make_sequence_value_info)
def _infer_Squeeze(self, node): # noqa: N802
input_shape = self._get_shape(node, 0)
op_set = get_opset(self.out_mp_)
# Depending on op-version 'axes' are provided as attribute or via 2nd input
if op_set < 13:
axes = get_attribute(node, "axes")
assert self._try_get_value(node, 1) is None
else:
axes = self._try_get_value(node, 1)
assert get_attribute(node, "axes") is None
if axes is None:
# No axes have been provided (neither via attribute nor via input).
# In this case the 'Shape' op should remove all axis with dimension 1.
# For symbolic dimensions we guess they are !=1.
output_shape = [s for s in input_shape if s != 1]
if self.verbose_ > 0:
symbolic_dimensions = [s for s in input_shape if type(s) != int] # noqa: E721
if len(symbolic_dimensions) > 0:
logger.debug(
f"Symbolic dimensions in input shape of op: '{node.op_type}' node: '{node.name}'. "
f"Assuming the following dimensions are never equal to 1: {symbolic_dimensions}"
)
else:
axes = [handle_negative_axis(a, len(input_shape)) for a in axes]
output_shape = []
for i in range(len(input_shape)):
if i not in axes:
output_shape.append(input_shape[i])
else:
assert input_shape[i] == 1 or type(input_shape[i]) != int # noqa: E721
if self.verbose_ > 0 and type(input_shape[i]) != int: # noqa: E721
logger.debug(
f"Symbolic dimensions in input shape of op: '{node.op_type}' node: '{node.name}'. "
f"Assuming the dimension '{input_shape[i]}' at index {i} of the input to be equal to 1."
)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
output_shape,
)
)
self._pass_on_sympy_data(node)
def _infer_Tile(self, node): # noqa: N802
repeats_value = self._try_get_value(node, 1)
new_sympy_shape = []
if repeats_value is not None:
input_sympy_shape = self._get_sympy_shape(node, 0)
for i, d in enumerate(input_sympy_shape):
new_dim = d * repeats_value[i]
new_sympy_shape.append(new_dim)
self._update_computed_dims(new_sympy_shape)
else:
new_sympy_shape = self._new_symbolic_shape(self._get_shape_rank(node, 0), node)
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
vi.type.tensor_type.elem_type,
get_shape_from_sympy_shape(new_sympy_shape),
)
)
def _infer_TopK(self, node): # noqa: N802
rank = self._get_shape_rank(node, 0)
axis = handle_negative_axis(get_attribute(node, "axis", -1), rank)
new_shape = self._get_shape(node, 0)
if get_opset(self.out_mp_) <= 9:
k = get_attribute(node, "k")
else:
k = self._get_int_or_float_values(node)[1]
if k is None:
k = self._new_symbolic_dim_from_output(node)
else:
k = as_scalar(k)
if type(k) in [int, str]:
new_shape[axis] = k
else:
new_sympy_shape = self._get_sympy_shape(node, 0)
new_sympy_shape[axis] = k
self._update_computed_dims(
new_sympy_shape
) # note that TopK dim could be computed in sympy_data, so need to update computed_dims when it enters shape
new_shape = get_shape_from_sympy_shape(new_sympy_shape)
for i_o in range(len(node.output)):
vi = self.known_vi_[node.output[i_o]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[i_o], vi.type.tensor_type.elem_type, new_shape))
def _infer_Transpose(self, node): # noqa: N802
if node.input[0] in self.sympy_data_:
data_shape = self._get_shape(node, 0)
perm = get_attribute(node, "perm", reversed(list(range(len(data_shape)))))
input_data = self.sympy_data_[node.input[0]]
self.sympy_data_[node.output[0]] = (
np.transpose(np.array(input_data).reshape(*data_shape), axes=tuple(perm)).flatten().tolist()
)
def _infer_Unsqueeze(self, node): # noqa: N802
input_shape = self._get_shape(node, 0)
op_set = get_opset(self.out_mp_)
# Depending on op-version 'axes' are provided as attribute or via 2nd input
if op_set < 13:
axes = get_attribute(node, "axes")
assert self._try_get_value(node, 1) is None
else:
axes = self._try_get_value(node, 1)
assert get_attribute(node, "axes") is None
output_rank = len(input_shape) + len(axes)
axes = [handle_negative_axis(a, output_rank) for a in axes]
input_axis = 0
output_shape = []
for i in range(output_rank):
if i in axes:
output_shape.append(1)
else:
output_shape.append(input_shape[input_axis])
input_axis += 1
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(
helper.make_tensor_value_info(
node.output[0],
self.known_vi_[node.input[0]].type.tensor_type.elem_type,
output_shape,
)
)
self._pass_on_sympy_data(node)
def _infer_ZipMap(self, node): # noqa: N802
map_key_type = None
if get_attribute(node, "classlabels_int64s") is not None:
map_key_type = onnx.TensorProto.INT64
elif get_attribute(node, "classlabels_strings") is not None:
map_key_type = onnx.TensorProto.STRING
assert map_key_type is not None
new_vi = onnx.ValueInfoProto()
new_vi.name = node.output[0]
new_vi.type.sequence_type.elem_type.map_type.value_type.tensor_type.elem_type = onnx.TensorProto.FLOAT
new_vi.type.sequence_type.elem_type.map_type.key_type = map_key_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(new_vi)
def _infer_Attention(self, node): # noqa: N802
shape = self._get_shape(node, 0)
shape_weights = self._get_shape(node, 1)
shape_bias = self._try_get_shape(node, 2)
if shape_bias is not None:
assert len(shape_bias) == 1
tripled_hidden_size = shape_bias[0] if shape_bias is not None else shape_weights[1]
if shape and len(shape) == 3:
qkv_hidden_sizes_attr = get_attribute(node, "qkv_hidden_sizes")
if qkv_hidden_sizes_attr is not None:
assert len(qkv_hidden_sizes_attr) == 3
shape[2] = int(qkv_hidden_sizes_attr[2])
elif isinstance(tripled_hidden_size, int):
shape[2] = int(tripled_hidden_size / 3)
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, shape))
if len(node.output) > 1:
# input shape: (batch_size, sequence_length, hidden_size)
# past shape: (2, batch_size, num_heads, past_sequence_length, head_size)
# mask shape: (batch_size, total_sequence_length) or (batch_size, sequence_length, total_sequence_length) or (batch_size, 1, max_seq_len, max_seq_len)
# present shape: (2, batch_size, num_heads, total_sequence_length, head_size), where total_sequence_length=sequence_length+past_sequence_length
input_shape = self._get_shape(node, 0)
past_shape = self._get_shape(node, 4) if len(node.input) > 4 and node.input[4] else []
mask_shape = self._get_shape(node, 3) if len(node.input) > 3 and node.input[3] else []
if past_shape and len(past_shape) == 5:
if mask_shape and len(mask_shape) in [2, 3]:
past_shape[3] = mask_shape[-1]
elif input_shape and len(input_shape) == 3:
if isinstance(input_shape[1], int) and isinstance(past_shape[3], int):
past_shape[3] = input_shape[1] + past_shape[3]
else:
past_shape[3] = f"{past_shape[3]}+{input_shape[1]}"
vi = self.known_vi_[node.output[1]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
# No past input but present output still exists
else:
num_heads = get_attribute(node, "num_heads")
head_size = input_shape[2] // num_heads
present_shape = [2, input_shape[0], num_heads, input_shape[1], head_size]
vi = self.known_vi_[node.output[1]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))
def _infer_GatedRelativePositionBias(self, node): # noqa: N802
# When padding is removed:
# query_layer: (token_count, num_heads x head_size)
# token_offset: (batch_size, seq_len)
# Otherwise:
# query_layer: (batch_size, seq_len, num_heads x head_size)
# token_offset: None
# Output shape: (batch_size, num_heads, seq_len, seq_len)
num_heads = get_attribute(node, "num_heads")
token_offset_shape = self._try_get_shape(node, 6)
if token_offset_shape is not None:
output_shape = [token_offset_shape[0], num_heads, token_offset_shape[1], token_offset_shape[1]]
else:
query_layer_shape = self._get_shape(node, 0)
assert query_layer_shape is not None and len(query_layer_shape) == 3
output_shape = [query_layer_shape[0], num_heads, query_layer_shape[1], query_layer_shape[1]]
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
def _infer_PackedAttention(self, node): # noqa: N802
shape = self._get_shape(node, 0)
shape_weights = self._get_shape(node, 1)
shape_bias = self._try_get_shape(node, 2)
if shape_bias is not None:
assert len(shape_bias) == 1
tripled_hidden_size = shape_bias[0] if shape_bias is not None else shape_weights[1]
if shape and len(shape) == 2:
qkv_hidden_sizes_attr = get_attribute(node, "qkv_hidden_sizes")
if qkv_hidden_sizes_attr is not None:
assert len(qkv_hidden_sizes_attr) == 3
shape[1] = int(qkv_hidden_sizes_attr[2])
elif isinstance(tripled_hidden_size, int):
shape[1] = int(tripled_hidden_size / 3)
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, shape))
def _infer_PackedMultiHeadAttention(self, node): # noqa: N802
shape_value = self._try_get_shape(node, 2)
if shape_value is not None and len(shape_value) == 2:
output_shape = shape_value
else:
shape_query = self._get_shape(node, 0)
assert shape_query is not None and len(shape_query) == 4
output_shape = [shape_query[0], shape_query[1] * shape_query[3]]
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
def _infer_RemovePadding(self, node): # noqa: N802
shape = self._get_shape(node, 0)
if shape and len(shape) == 3:
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, ["token_count", shape[2]]))
vi_token_offset = self.known_vi_[node.output[1]]
vi_token_offset.CopyFrom(
helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT32, [shape[0], shape[1]])
)
vi_cumulated_seq_len = self.known_vi_[node.output[2]]
vi_cumulated_seq_len.CopyFrom(
helper.make_tensor_value_info(node.output[2], onnx.TensorProto.INT32, ["batch_size + 1"])
)
vi_max_seq_len = self.known_vi_[node.output[3]]
vi_max_seq_len.CopyFrom(helper.make_tensor_value_info(node.output[3], onnx.TensorProto.INT32, [1]))
def _infer_RestorePadding(self, node): # noqa: N802
shape_input = self._get_shape(node, 0)
shape_token_offset = self._get_shape(node, 1)
if shape_input and len(shape_input) == 2 and shape_token_offset and len(shape_token_offset) == 2:
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
output_shape = [shape_token_offset[0], shape_token_offset[1], shape_input[1]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
def _infer_BiasGelu(self, node): # noqa: N802
self._propagate_shape_and_type(node)
def _infer_MultiHeadAttention(self, node): # noqa: N802
# Output 0 has shape (batch_size, sequence_length, v_hidden_size)
# Q, K and V without packing:
# Input 0 (query) has shape (batch_size, sequence_length, hidden_size)
# Input 1 (key) has shape (batch_size, kv_sequence_length, hidden_size) or (batch_size, num_heads, kv_sequence_length, head_size)
# Input 2 (value) has shape (batch_size, kv_sequence_length, v_hidden_size) or (batch_size, num_heads, kv_sequence_length, head_size)
# Packed KV:
# Input 0 (query) has shape (batch_size, sequence_length, hidden_size)
# Input 1 (batch_size, kv_sequence_length, num_heads, 2, head_size)
# Input 2 nullptr
# Packed QKV:
# Input 0 (batch_size, sequence_length, num_heads, 3, head_size)
# Input 1 nullptr
# Input 2 nullptr
query_shape = self._get_shape(node, 0)
total_sequence_length = None
output_dtype = None
if query_shape is not None:
if len(query_shape) == 3:
key_shape = self._try_get_shape(node, 1)
# By default, hidden size is same for Q/K/V. Only need check v_hidden_size when value is provided.
output_shape = query_shape
if key_shape is not None and len(key_shape) == 3:
value_shape = self._try_get_shape(node, 2)
if value_shape is not None and len(value_shape) == 3:
output_shape[2] = value_shape[2]
total_sequence_length = key_shape[1]
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
elif len(query_shape) == 5:
if isinstance(query_shape[2], int) and isinstance(query_shape[4], int):
output_shape = [query_shape[0], query_shape[1], query_shape[2] * query_shape[4]]
else:
output_shape = [query_shape[0], query_shape[1], f"{query_shape[2]}*{query_shape[4]}"]
total_sequence_length = query_shape[1]
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
if len(node.output) > 1:
batch_size = query_shape[0]
num_heads = get_attribute(node, "num_heads")
head_size = None
if len(query_shape) == 3:
head_size = (
int(query_shape[2] / num_heads)
if isinstance(query_shape[2], int)
else f"{query_shape[2]}/{num_heads}"
)
else:
head_size = query_shape[4]
past_shape = self._try_get_shape(node, 6)
if past_shape is not None:
if isinstance(past_shape[2], int) and isinstance(total_sequence_length, int):
total_sequence_length = past_shape[2] + total_sequence_length
else:
total_sequence_length = f"{past_shape[2]}+{total_sequence_length}"
present_shape = [batch_size, num_heads, total_sequence_length, head_size]
assert output_dtype is not None
if len(node.output) > 2 and node.output[1] and node.output[2]:
vi = self.known_vi_[node.output[1]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))
vi = self.known_vi_[node.output[2]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, present_shape))
def _infer_DecoderMaskedMultiHeadAttention(self, node): # noqa: N802
# Output 0 has shape (batch_size, 1, v_hidden_size)
# Q, K and V without packing:
# Input 0 (query) has shape (batch_size, 1, hidden_size)
# Input 5 (past_key) if exists has shape (batch_size, num_heads, max_sequence_length, head_size)
query_shape = self._get_shape(node, 0)
if query_shape is not None:
output_shape = query_shape
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
assert output_dtype is not None
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, output_shape))
if len(node.output) > 2 and node.output[1] and node.output[2]:
past_shape = self._try_get_shape(node, 5)
if past_shape is not None:
vi = self.known_vi_[node.output[1]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
vi = self.known_vi_[node.output[2]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
def _infer_FastGelu(self, node): # noqa: N802
self._propagate_shape_and_type(node)
def _infer_Gelu(self, node): # noqa: N802
self._propagate_shape_and_type(node)
def _infer_QuickGelu(self, node): # noqa: N802
self._propagate_shape_and_type(node)
def _infer_GemmFastGelu(self, node): # noqa: N802
self._compute_matmul_shape(node)
def _infer_GemmFloat8(self, node): # noqa: N802
self._compute_matmul_shape(node)
def _infer_LayerNormalization(self, node): # noqa: N802
self._propagate_shape_and_type(node)
if len(node.output) > 1:
axis = get_attribute(node, "axis")
if axis is None:
axis = -1
x_shape = self._get_shape(node, 0)
if x_shape is not None:
rank = len(x_shape)
axis = handle_negative_axis(axis, rank)
mean_shape = x_shape[:axis] + [1 for _ in range(rank - axis)]
mean_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
if mean_dtype == onnx.TensorProto.FLOAT16 or mean_dtype == onnx.TensorProto.BFLOAT16:
mean_dtype = onnx.TensorProto.FLOAT
vi = self.known_vi_[node.output[1]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[1], mean_dtype, mean_shape))
if len(node.output) > 2:
vi = self.known_vi_[node.output[2]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[2], mean_dtype, mean_shape))
def _infer_LongformerAttention(self, node): # noqa: N802
self._propagate_shape_and_type(node)
def _infer_EmbedLayerNormalization(self, node): # noqa: N802
input_ids_shape = self._get_shape(node, 0)
word_embedding_shape = self._get_shape(node, 2)
assert len(input_ids_shape) == 2 and len(word_embedding_shape) == 2
output_shape = [*input_ids_shape, word_embedding_shape[1]]
word_embedding_dtype = self.known_vi_[node.input[2]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], word_embedding_dtype, output_shape))
if len(node.output) > 1 and node.output[1]:
mask_index_shape = [input_ids_shape[0]]
vi = self.known_vi_[node.output[1]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[1], onnx.TensorProto.INT32, mask_index_shape))
if len(node.output) > 2:
# Optional output of add before layer normalization is done
# shape is same as the output
vi = self.known_vi_[node.output[2]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[2], word_embedding_dtype, output_shape))
def _infer_SkipLayerNormalization(self, node): # noqa: N802
self._propagate_shape_and_type(node)
# If the SkipLayerNormalization node contains the optional
# output for inference, infer the shape and type for it too
if len(node.output) > 3:
self._propagate_shape_and_type(node, 0, 3)
def _infer_GroupNorm(self, node): # noqa: N802
self._propagate_shape_and_type(node)
def _infer_PagedAttention(self, node): # noqa: N802
self._propagate_shape_and_type(node)
def _infer_GroupQueryAttention(self, node): # noqa: N802
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
past_shape = self._try_get_shape(node, 3)
if past_shape is not None:
vi = self.known_vi_[node.output[1]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
vi = self.known_vi_[node.output[2]]
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, past_shape))
if node.input[1] != "" and node.input[2] != "":
self._propagate_shape_and_type(node, 0, 0)
else:
# combined qkv: (batch_size, sequence_length, num_heads * head_size + 2 * kv_num_heads * head_size)
assert node.input[1] == "" and node.input[2] == ""
num_heads = get_attribute(node, "num_heads")
kv_num_heads = get_attribute(node, "kv_num_heads")
query_shape = self._get_shape(node, 0)
if query_shape is not None:
hidden_size = query_shape[2]
if isinstance(hidden_size, int):
head_size = int(hidden_size / (num_heads + 2 * kv_num_heads))
query_shape[2] = num_heads * head_size
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], output_dtype, query_shape))
def _infer_SkipGroupNorm(self, node): # noqa: N802
self._propagate_shape_and_type(node, 0, 0)
if len(node.output) > 1:
self._propagate_shape_and_type(node, 0, 1)
def _infer_BiasSplitGelu(self, node): # noqa: N802
input_shape = self._get_shape(node, 0)
bias_shape = self._get_shape(node, 1)
if input_shape and bias_shape and isinstance(bias_shape[0], int):
output_shape = input_shape
output_shape[2] = int(bias_shape[0] / 2)
vi = self.known_vi_[node.output[0]]
output_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
vi.CopyFrom(helper.make_tensor_value_info(vi.name, output_dtype, output_shape))
def _infer_BiasAdd(self, node): # noqa: N802
self._propagate_shape_and_type(node)
def _infer_RotaryEmbedding(self, node): # noqa: N802
if len(node.output) == 1:
self._propagate_shape_and_type(node)
elif len(node.output) == 2:
# Extraneous constant nodes outputted by RotaryEmbedding function made with `export_modules_as_functions`
self._propagate_shape_and_type(node, input_index=1, output_index=0)
self._propagate_shape_and_type(node, input_index=0, output_index=1) # true output
elif len(node.output) == 3:
# Extraneous constant nodes outputted by RotaryEmbedding function made with `export_modules_as_functions`
self._propagate_shape_and_type(node, input_index=1, output_index=0)
self._propagate_shape_and_type(node, input_index=1, output_index=1)
self._propagate_shape_and_type(node, input_index=0, output_index=2) # true output
def _infer_PythonOp(self, node): # noqa: N802
output_tensor_types = get_attribute(node, "output_tensor_types")
assert output_tensor_types, f"PythonOp '{node.name}' has no output_tensor_types attribute."
output_tensor_ranks = get_attribute(node, "output_tensor_ranks")
assert output_tensor_ranks, f"PythonOp '{node.name}' has no output_tensor_ranks attribute."
from onnxruntime.capi._pybind_state import get_shape_inference_function
func_name = get_attribute(node, "func_name").decode()
shape_inferer = get_shape_inference_function(func_name)
# Set the context output separately.
# The first output is torch.autograd.Function''s context.
vi = self.known_vi_[node.output[0]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[0], onnx.TensorProto.INT64, []))
if shape_inferer is not None:
input_shapes = []
input_dtypes = []
for input_index in range(len(node.input)):
shape = self._get_shape(node, input_index)
input_shapes.append(shape)
input_dtype = self.known_vi_[node.input[input_index]].type.tensor_type.elem_type
input_dtypes.append(input_dtype)
output_shapes, output_dtypes = shape_inferer(node, input_shapes, input_dtypes)
assert len(output_shapes) == len(output_dtypes) == (len(node.output) - 1), (
f"PythonOp '{func_name}' returned {len(output_shapes)} shapes and {len(output_dtypes)} dtypes, "
f"but expected {len(node.output) - 1} outputs."
)
for i in range(len(node.output) - 1):
output_index = i + 1
vi = self.known_vi_[node.output[output_index]]
vi.CopyFrom(
helper.make_tensor_value_info(node.output[output_index], output_dtypes[i], output_shapes[i])
)
else:
# General shape inference for PythonOp.
# Outputs after torch.autograd.Function's context are tensors.
# We assume their ranks are fixed for different model inputs.
for i in range(len(node.output) - 1):
# Process the i-th tensor outputs.
vi = self.known_vi_[node.output[i + 1]]
sympy_shape = self._new_symbolic_shape(output_tensor_ranks[i], node)
shape = get_shape_from_sympy_shape(sympy_shape)
value_info = helper.make_tensor_value_info(node.output[i + 1], output_tensor_types[i], shape)
vi.CopyFrom(value_info)
def _propagate_shape_and_type(self, node, input_index=0, output_index=0):
shape = self._get_shape(node, input_index)
output_dtype = self.known_vi_[node.input[input_index]].type.tensor_type.elem_type
vi = self.known_vi_[node.output[output_index]]
vi.CopyFrom(helper.make_tensor_value_info(node.output[output_index], output_dtype, shape))
def _is_none_dim(self, dim_value):
if type(dim_value) != str: # noqa: E721
return False
if "unk__" not in dim_value:
return False
if dim_value in self.symbolic_dims_:
return False
return True
def _is_shape_contains_none_dim(self, out_shape):
for out in out_shape:
if self._is_none_dim(out):
return out
return None
def _infer_impl(self, start_sympy_data=None):
self.sympy_data_ = start_sympy_data or {}
self.out_mp_.graph.ClearField("value_info")
self._apply_suggested_merge(graph_input_only=True)
self.input_symbols_ = set()
for i in self.out_mp_.graph.input:
input_shape = get_shape_from_value_info(i)
if input_shape is None:
continue
if is_sequence(i.type):
input_dims = i.type.sequence_type.elem_type.tensor_type.shape.dim
else:
input_dims = i.type.tensor_type.shape.dim
for i_dim, dim in enumerate(input_shape):
if dim is None:
# some models use None for symbolic dim in input, replace it with a string
input_dims[i_dim].dim_param = str(self._new_symbolic_dim(i.name, i_dim))
self.input_symbols_.update([d for d in input_shape if type(d) == str]) # noqa: E721
for s in self.input_symbols_:
if s in self.suggested_merge_:
s_merge = self.suggested_merge_[s]
assert s_merge in self.symbolic_dims_
self.symbolic_dims_[s] = self.symbolic_dims_[s_merge]
else:
# Since inputs are not produced by other ops, we can assume positivity
self.symbolic_dims_[s] = sympy.Symbol(s, integer=True, positive=True)
# create a temporary ModelProto for single node inference
# note that we remove initializer to have faster inference
# for tensor ops like Reshape/Tile/Expand that read initializer, we need to do sympy computation based inference anyways
self.tmp_mp_ = onnx.ModelProto()
self.tmp_mp_.CopyFrom(self.out_mp_)
self.tmp_mp_.graph.ClearField("initializer")
# compute prerequesite for node for topological sort
# node with subgraphs may have dependency on implicit inputs, which will affect topological sort
prereq_for_node = {} # map from node to all its inputs, including implicit ones in subgraph
def get_prereq(node):
names = {i for i in node.input if i}
subgraphs = []
if node.op_type == "If":
subgraphs = [
get_attribute(node, "then_branch"),
get_attribute(node, "else_branch"),
]
elif node.op_type in ["Loop", "Scan"]:
subgraphs = [get_attribute(node, "body")]
for g in subgraphs:
g_outputs_and_initializers = {i.name for i in g.initializer}
g_prereq = set()
for n in g.node:
g_outputs_and_initializers.update(n.output)
for n in g.node:
g_prereq.update([i for i in get_prereq(n) if i not in g_outputs_and_initializers])
names.update(g_prereq)
# remove subgraph inputs from g_prereq since those are local-only
for i in g.input:
if i.name in names:
names.remove(i.name)
return names
for n in self.tmp_mp_.graph.node:
prereq_for_node[n.output[0]] = get_prereq(n)
# topological sort nodes, note there might be dead nodes so we check if all graph outputs are reached to terminate
sorted_nodes = []
sorted_known_vi = {i.name for i in list(self.out_mp_.graph.input) + list(self.out_mp_.graph.initializer)}
if any([o.name in sorted_known_vi for o in self.out_mp_.graph.output]):
# Loop/Scan will have some graph output in graph inputs, so don't do topological sort
sorted_nodes = self.out_mp_.graph.node
else:
while not all([o.name in sorted_known_vi for o in self.out_mp_.graph.output]):
old_sorted_nodes_len = len(sorted_nodes)
for node in self.out_mp_.graph.node:
if (node.output[0] not in sorted_known_vi) and all(
[i in sorted_known_vi for i in prereq_for_node[node.output[0]] if i]
):
sorted_known_vi.update(node.output)
sorted_nodes.append(node)
if old_sorted_nodes_len == len(sorted_nodes) and not all(
[o.name in sorted_known_vi for o in self.out_mp_.graph.output]
):
raise Exception("Invalid model with cyclic graph")
for node in sorted_nodes:
assert all([i in self.known_vi_ for i in node.input if i])
self._onnx_infer_single_node(node)
known_aten_op = False
if node.op_type in self.dispatcher_:
self.dispatcher_[node.op_type](node)
elif node.op_type in ["ConvTranspose"]:
# onnx shape inference ops like ConvTranspose may have empty shape for symbolic input
# before adding symbolic compute for them
# mark the output type as UNDEFINED to allow guessing of rank
vi = self.known_vi_[node.output[0]]
if len(vi.type.tensor_type.shape.dim) == 0:
vi.type.tensor_type.elem_type = onnx.TensorProto.UNDEFINED
elif node.op_type == "ATen" and node.domain == "org.pytorch.aten":
for attr in node.attribute:
# TODO: Is overload_name needed?
if attr.name == "operator":
aten_op_name = attr.s.decode("utf-8") if isinstance(attr.s, bytes) else attr.s
if aten_op_name in self.aten_op_dispatcher_:
known_aten_op = True
self.aten_op_dispatcher_[aten_op_name](node)
break
if self.verbose_ > 2:
logger.debug(node.op_type + ": " + node.name)
for i, name in enumerate(node.input):
logger.debug(
" Input {}: {} {}".format(i, name, "initializer" if name in self.initializers_ else "")
)
# onnx automatically merge dims with value, i.e. Mul(['aaa', 'bbb'], [1000, 1]) -> [1000, 'bbb']
# symbolic shape inference needs to apply merge of 'aaa' -> 1000 in this case
if node.op_type in [
"Add",
"Sub",
"Mul",
"Div",
"MatMul",
"MatMulInteger",
"MatMulInteger16",
"Where",
"Sum",
]:
vi = self.known_vi_[node.output[0]]
out_rank = len(get_shape_from_type_proto(vi.type))
in_shapes = [self._get_shape(node, i) for i in range(len(node.input))]
for d in range(out_rank - (2 if node.op_type in ["MatMul", "MatMulInteger", "MatMulInteger16"] else 0)):
in_dims = [s[len(s) - out_rank + d] for s in in_shapes if len(s) + d >= out_rank]
if len(in_dims) > 1:
self._check_merged_dims(in_dims, allow_broadcast=True)
for i_o in range(len(node.output)):
# Special cases:
# 1) We do not care about the training related outputs of SkipLayerNormalization
# 2) We do not care about the extraneous constant outputs in RotaryEmbedding because
# the RotaryEmbedding op created during export can be replaced by the RotaryEmbedding
# contrib op
if (
node.op_type == "SkipLayerNormalization" or node.op_type == "SkipSimplifiedLayerNormalization"
) and i_o in [1, 2]:
continue
if node.op_type == "RotaryEmbedding" and len(node.output) > 1:
# Skip symbolic shape inference for RotaryEmbedding functions that have extraneous outputs
# generated by `export_modules_as_functions`
continue
vi = self.known_vi_[node.output[i_o]]
out_type = vi.type
out_type_kind = out_type.WhichOneof("value")
# do not process shape for non-tensors
if out_type_kind not in ["tensor_type", "sparse_tensor_type", None]:
if self.verbose_ > 2:
if out_type_kind == "sequence_type":
seq_cls_type = out_type.sequence_type.elem_type.WhichOneof("value")
if seq_cls_type == "tensor_type":
logger.debug(
" {}: sequence of {} {}".format(
node.output[i_o],
str(get_shape_from_value_info(vi)),
onnx.TensorProto.DataType.Name(
vi.type.sequence_type.elem_type.tensor_type.elem_type
),
)
)
else:
logger.debug(f" {node.output[i_o]}: sequence of {seq_cls_type}")
else:
logger.debug(f" {node.output[i_o]}: {out_type_kind}")
continue
out_shape = get_shape_from_value_info(vi)
out_type_undefined = out_type.tensor_type.elem_type == onnx.TensorProto.UNDEFINED
if self.verbose_ > 2:
logger.debug(
" {}: {} {}".format(
node.output[i_o],
str(out_shape),
onnx.TensorProto.DataType.Name(vi.type.tensor_type.elem_type),
)
)
if node.output[i_o] in self.sympy_data_:
logger.debug(" Sympy Data: " + str(self.sympy_data_[node.output[i_o]]))
# onnx >= 1.11.0, use unk__#index instead of None when the shape dim is uncertain
if (
out_shape is not None and (None in out_shape or self._is_shape_contains_none_dim(out_shape))
) or out_type_undefined:
if self.auto_merge_:
if node.op_type in [
"Add",
"Sub",
"Mul",
"Div",
"MatMul",
"MatMulInteger",
"MatMulInteger16",
"Concat",
"Where",
"Sum",
"Equal",
"Less",
"Greater",
"LessOrEqual",
"GreaterOrEqual",
"Min",
"Max",
]:
shapes = [self._get_shape(node, i) for i in range(len(node.input))]
if node.op_type in [
"MatMul",
"MatMulInteger",
"MatMulInteger16",
]:
if None in out_shape or self._is_shape_contains_none_dim(out_shape):
if None in out_shape:
idx = out_shape.index(None)
else:
idx = out_shape.index(self._is_shape_contains_none_dim(out_shape))
dim_idx = [len(s) - len(out_shape) + idx for s in shapes]
# only support auto merge for MatMul for dim < rank-2 when rank > 2
assert len(shapes[0]) > 2 and dim_idx[0] < len(shapes[0]) - 2
assert len(shapes[1]) > 2 and dim_idx[1] < len(shapes[1]) - 2
elif node.op_type == "Expand":
# auto merge for cases like Expand([min(batch, 1), min(seq, 512)], [batch, seq])
shapes = [
self._get_shape(node, 0),
self._get_value(node, 1),
]
else:
shapes = []
if shapes:
for idx in range(len(out_shape)):
if out_shape[idx] is not None and not self._is_none_dim(out_shape[idx]):
continue
# note that the broadcasting rule aligns from right to left
# if a tensor has a lower rank (dim_idx[idx] < 0), it would automatically broadcast and need no merge
dim_idx = [len(s) - len(out_shape) + idx for s in shapes]
if len(dim_idx) > 0:
self._add_suggested_merge(
[
s[i] if is_literal(s[i]) else str(s[i])
for s, i in zip(shapes, dim_idx)
if i >= 0
]
)
self.run_ = True
else:
self.run_ = False
else:
self.run_ = False
# create new dynamic dims for ops not handled by symbolic shape inference
if self.run_ is False and node.op_type not in self.dispatcher_ and not known_aten_op:
is_unknown_op = out_type_undefined and (out_shape is None or len(out_shape) == 0)
if is_unknown_op:
# unknown op to ONNX, maybe from higher opset or other domain
# only guess the output rank from input 0 when using guess_output_rank option
out_rank = self._get_shape_rank(node, 0) if self.guess_output_rank_ else -1
else:
# valid ONNX op, but not handled by symbolic shape inference, just assign dynamic shape
out_rank = len(out_shape)
if out_rank >= 0:
new_shape = self._new_symbolic_shape(out_rank, node, i_o)
if out_type_undefined:
# guess output data type from input vi if not defined
out_dtype = self.known_vi_[node.input[0]].type.tensor_type.elem_type
else:
# otherwise, use original data type
out_dtype = vi.type.tensor_type.elem_type
vi.CopyFrom(
helper.make_tensor_value_info(
vi.name,
out_dtype,
get_shape_from_sympy_shape(new_shape),
)
)
if self.verbose_ > 0:
if is_unknown_op:
logger.debug(
"Possible unknown op: {} node: {}, guessing {} shape".format(
node.op_type, node.name, vi.name
)
)
if self.verbose_ > 2:
logger.debug(
" {}: {} {}".format(
node.output[i_o],
str(new_shape),
vi.type.tensor_type.elem_type,
)
)
self.run_ = True
continue # continue the inference after guess, no need to stop as no merge is needed
if self.verbose_ > 0 or not self.auto_merge_ or out_type_undefined:
logger.debug("Stopping at incomplete shape inference at " + node.op_type + ": " + node.name)
logger.debug("node inputs:")
for i in node.input:
if i in self.known_vi_:
logger.debug(self.known_vi_[i])
else:
logger.debug(f"not in known_vi_ for {i}")
logger.debug("node outputs:")
for o in node.output:
if o in self.known_vi_:
logger.debug(self.known_vi_[o])
else:
logger.debug(f"not in known_vi_ for {o}")
if self.auto_merge_ and not out_type_undefined:
logger.debug("Merging: " + str(self.suggested_merge_))
return False
self.run_ = False
return True
def _update_output_from_vi(self):
for output in self.out_mp_.graph.output:
if output.name in self.known_vi_:
output.CopyFrom(self.known_vi_[output.name])
@staticmethod
def infer_shapes(in_mp, int_max=2**31 - 1, auto_merge=False, guess_output_rank=False, verbose=0):
onnx_opset = get_opset(in_mp)
if (not onnx_opset) or onnx_opset < 7:
logger.warning("Only support models of onnx opset 7 and above.")
return None
symbolic_shape_inference = SymbolicShapeInference(int_max, auto_merge, guess_output_rank, verbose)
all_shapes_inferred = False
symbolic_shape_inference._preprocess(in_mp)
while symbolic_shape_inference.run_:
all_shapes_inferred = symbolic_shape_inference._infer_impl()
symbolic_shape_inference._update_output_from_vi()
if not all_shapes_inferred:
onnx.save_model(symbolic_shape_inference.out_mp_, "sym_shape_infer_temp.onnx", save_as_external_data=True)
raise Exception("Incomplete symbolic shape inference")
return symbolic_shape_inference.out_mp_
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--input", required=True, help="The input model file")
parser.add_argument("--output", help="The output model file")
parser.add_argument(
"--auto_merge",
help="Automatically merge symbolic dims when confliction happens",
action="store_true",
default=False,
)
parser.add_argument(
"--int_max",
help="maximum value for integer to be treated as boundless for ops like slice",
type=int,
default=2**31 - 1,
)
parser.add_argument(
"--guess_output_rank",
help="guess output rank to be the same as input 0 for unknown ops",
action="store_true",
default=False,
)
parser.add_argument(
"--verbose",
help="Prints detailed logs of inference, 0: turn off, 1: warnings, 3: detailed",
type=int,
default=0,
)
parser.add_argument(
"--save_as_external_data",
help="Saving an ONNX model to external data",
action="store_true",
default=False,
)
parser.add_argument(
"--all_tensors_to_one_file",
help="Saving all the external data to one file",
action="store_true",
default=False,
)
parser.add_argument(
"--external_data_location",
help="The file location to save the external file",
default="./",
)
parser.add_argument(
"--external_data_size_threshold",
help="The size threshold for external data",
type=int,
default=1024,
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_arguments()
logger.info("input model: " + args.input)
if args.output:
logger.info("output model " + args.output)
logger.info("Doing symbolic shape inference...")
out_mp = SymbolicShapeInference.infer_shapes(
onnx.load(args.input),
args.int_max,
args.auto_merge,
args.guess_output_rank,
args.verbose,
)
if args.output and out_mp:
if args.save_as_external_data:
onnx.save_model(
out_mp,
args.output,
save_as_external_data=True,
all_tensors_to_one_file=args.all_tensors_to_one_file,
location=args.external_data_location,
size_threshold=args.external_data_size_threshold,
convert_attribute=False,
)
else:
onnx.save(out_mp, args.output)
logger.info("Done!")
|