pesi
/

File size: 17,803 Bytes
7ad7e4d
43a489d
 
 
 
7ad7e4d
43a489d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad7e4d
43a489d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0f5d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43a489d
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0f5d8
43a489d
 
 
 
 
1f0f5d8
 
 
 
 
 
 
 
 
43a489d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ad7e4d
 
 
 
 
1f0f5d8
 
7ad7e4d
43a489d
b75f05d
 
43a489d
 
 
b75f05d
 
 
 
43a489d
 
 
 
 
 
 
 
 
 
 
 
 
 
1f0f5d8
7ad7e4d
8072759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import os
import numpy as np
from typing import List, Tuple
import onnxruntime as ort
import cv2

# dictionary from https://github.com/Tau-J/rtmlib/blob/4b29101d54b611048ef165277cebfffff3030074/rtmlib/visualization/skeleton/coco17.py
coco17 = dict(name='coco17',
              keypoint_info={
                  0:
                  dict(name='nose', id=0, color=[51, 153, 255], swap=''),
                  1:
                  dict(name='left_eye',
                       id=1,
                       color=[51, 153, 255],
                       swap='right_eye'),
                  2:
                  dict(name='right_eye',
                       id=2,
                       color=[51, 153, 255],
                       swap='left_eye'),
                  3:
                  dict(name='left_ear',
                       id=3,
                       color=[51, 153, 255],
                       swap='right_ear'),
                  4:
                  dict(name='right_ear',
                       id=4,
                       color=[51, 153, 255],
                       swap='left_ear'),
                  5:
                  dict(name='left_shoulder',
                       id=5,
                       color=[0, 255, 0],
                       swap='right_shoulder'),
                  6:
                  dict(name='right_shoulder',
                       id=6,
                       color=[255, 128, 0],
                       swap='left_shoulder'),
                  7:
                  dict(name='left_elbow',
                       id=7,
                       color=[0, 255, 0],
                       swap='right_elbow'),
                  8:
                  dict(name='right_elbow',
                       id=8,
                       color=[255, 128, 0],
                       swap='left_elbow'),
                  9:
                  dict(name='left_wrist',
                       id=9,
                       color=[0, 255, 0],
                       swap='right_wrist'),
                  10:
                  dict(name='right_wrist',
                       id=10,
                       color=[255, 128, 0],
                       swap='left_wrist'),
                  11:
                  dict(name='left_hip',
                       id=11,
                       color=[0, 255, 0],
                       swap='right_hip'),
                  12:
                  dict(name='right_hip',
                       id=12,
                       color=[255, 128, 0],
                       swap='left_hip'),
                  13:
                  dict(name='left_knee',
                       id=13,
                       color=[0, 255, 0],
                       swap='right_knee'),
                  14:
                  dict(name='right_knee',
                       id=14,
                       color=[255, 128, 0],
                       swap='left_knee'),
                  15:
                  dict(name='left_ankle',
                       id=15,
                       color=[0, 255, 0],
                       swap='right_ankle'),
                  16:
                  dict(name='right_ankle',
                       id=16,
                       color=[255, 128, 0],
                       swap='left_ankle')
              },
              skeleton_info={
                  0:
                  dict(link=('left_ankle', 'left_knee'),
                       id=0,
                       color=[0, 255, 0]),
                  1:
                  dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255,
                                                                    0]),
                  2:
                  dict(link=('right_ankle', 'right_knee'),
                       id=2,
                       color=[255, 128, 0]),
                  3:
                  dict(link=('right_knee', 'right_hip'),
                       id=3,
                       color=[255, 128, 0]),
                  4:
                  dict(link=('left_hip', 'right_hip'),
                       id=4,
                       color=[51, 153, 255]),
                  5:
                  dict(link=('left_shoulder', 'left_hip'),
                       id=5,
                       color=[51, 153, 255]),
                  6:
                  dict(link=('right_shoulder', 'right_hip'),
                       id=6,
                       color=[51, 153, 255]),
                  7:
                  dict(link=('left_shoulder', 'right_shoulder'),
                       id=7,
                       color=[51, 153, 255]),
                  8:
                  dict(link=('left_shoulder', 'left_elbow'),
                       id=8,
                       color=[0, 255, 0]),
                  9:
                  dict(link=('right_shoulder', 'right_elbow'),
                       id=9,
                       color=[255, 128, 0]),
                  10:
                  dict(link=('left_elbow', 'left_wrist'),
                       id=10,
                       color=[0, 255, 0]),
                  11:
                  dict(link=('right_elbow', 'right_wrist'),
                       id=11,
                       color=[255, 128, 0]),
                  12:
                  dict(link=('left_eye', 'right_eye'),
                       id=12,
                       color=[51, 153, 255]),
                  13:
                  dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
                  14:
                  dict(link=('nose', 'right_eye'), id=14, color=[51, 153,
                                                                 255]),
                  15:
                  dict(link=('left_eye', 'left_ear'),
                       id=15,
                       color=[51, 153, 255]),
                  16:
                  dict(link=('right_eye', 'right_ear'),
                       id=16,
                       color=[51, 153, 255]),
                  17:
                  dict(link=('left_ear', 'left_shoulder'),
                       id=17,
                       color=[51, 153, 255]),
                  18:
                  dict(link=('right_ear', 'right_shoulder'),
                       id=18,
                       color=[51, 153, 255])
              })

# functions from https://github.com/Tau-J/rtmlib/blob/4b29101d54b611048ef165277cebfffff3030074/rtmlib/visualization/draw.py#L71
def draw_mmpose(img,
                keypoints,
                scores,
                keypoint_info,
                skeleton_info,
                kpt_thr=0.5,
                radius=2,
                line_width=2):
    assert len(keypoints.shape) == 2

    vis_kpt = [s >= kpt_thr for s in scores]

    link_dict = {}
    for i, kpt_info in keypoint_info.items():
        kpt_color = tuple(kpt_info['color'])
        link_dict[kpt_info['name']] = kpt_info['id']

        kpt = keypoints[i]

        if vis_kpt[i]:
            img = cv2.circle(img, (int(kpt[0]), int(kpt[1])), int(radius),
                             kpt_color, -1)

    for i, ske_info in skeleton_info.items():
        link = ske_info['link']
        pt0, pt1 = link_dict[link[0]], link_dict[link[1]]

        if vis_kpt[pt0] and vis_kpt[pt1]:
            link_color = ske_info['color']
            kpt0 = keypoints[pt0]
            kpt1 = keypoints[pt1]

            img = cv2.line(img, (int(kpt0[0]), int(kpt0[1])),
                           (int(kpt1[0]), int(kpt1[1])),
                           link_color,
                           thickness=line_width)

    return img

# with simplification to use onnxruntime only
def draw_skeleton(img,
                  keypoints,
                  scores,
                  kpt_thr=0.5,
                  radius=2,
                  line_width=2):
    num_keypoints = keypoints.shape[1]

    if num_keypoints == 17:
        skeleton = 'coco17'
    else:
        raise NotImplementedError

    skeleton_dict = eval(f'{skeleton}')
    keypoint_info = skeleton_dict['keypoint_info']
    skeleton_info = skeleton_dict['skeleton_info']

    if len(keypoints.shape) == 2:
        keypoints = keypoints[None, :, :]
        scores = scores[None, :, :]

    num_instance = keypoints.shape[0]
    if skeleton in ['coco17']:
        for i in range(num_instance):
            img = draw_mmpose(img, keypoints[i], scores[i], keypoint_info,
                              skeleton_info, kpt_thr, radius, line_width)
    else:
        raise NotImplementedError
    return img

class RTMO_GPU(object):

    def preprocess(self, img: np.ndarray):
        """Do preprocessing for RTMPose model inference.

        Args:
            img (np.ndarray): Input image in shape.

        Returns:
            tuple:
            - resized_img (np.ndarray): Preprocessed image.
            - center (np.ndarray): Center of image.
            - scale (np.ndarray): Scale of image.
        """
        if len(img.shape) == 3:
            padded_img = np.ones(
                (self.model_input_size[0], self.model_input_size[1], 3),
                dtype=np.uint8) * 114
        else:
            padded_img = np.ones(self.model_input_size, dtype=np.uint8) * 114

        ratio = min(self.model_input_size[0] / img.shape[0],
                    self.model_input_size[1] / img.shape[1])
        resized_img = cv2.resize(
            img,
            (int(img.shape[1] * ratio), int(img.shape[0] * ratio)),
            interpolation=cv2.INTER_LINEAR,
        ).astype(np.uint8)
        padded_shape = (int(img.shape[0] * ratio), int(img.shape[1] * ratio))
        padded_img[:padded_shape[0], :padded_shape[1]] = resized_img

        # normalize image
        if self.mean is not None:
            self.mean = np.array(self.mean)
            self.std = np.array(self.std)
            padded_img = (padded_img - self.mean) / self.std

        return padded_img, ratio

    def postprocess(
        self,
        outputs: List[np.ndarray],
        ratio: float = 1.,
    ) -> Tuple[np.ndarray, np.ndarray]:
        """Do postprocessing for RTMO model inference.

        Args:
            outputs (List[np.ndarray]): Outputs of RTMO model.
            ratio (float): Ratio of preprocessing.

        Returns:
            tuple:
            - final_boxes (np.ndarray): Final bounding boxes.
            - final_scores (np.ndarray): Final scores.
        """
        
        if not self.is_yolo_nas_pose:
            # RTMO
            det_outputs, pose_outputs = outputs

            # onnx contains nms module
            pack_dets = (det_outputs[0, :, :4], det_outputs[0, :, 4])
            final_boxes, final_scores = pack_dets
            final_boxes /= ratio
            isscore = final_scores > 0.3
            isbbox = [i for i in isscore]
            # final_boxes = final_boxes[isbbox]

            # decode pose outputs
            keypoints, scores = pose_outputs[0, :, :, :2], pose_outputs[0, :, :, 2]
            keypoints = keypoints / ratio

            keypoints = keypoints[isbbox]
            scores = scores[isbbox]
        else:
            # NAS Pose
            flat_predictions = outputs[0]
            if flat_predictions.shape[0] > 0: # at least one person found
                mask = flat_predictions[:, 0] == 0
                pred_bboxes = flat_predictions[mask, 1:5]
                pred_joints = flat_predictions[mask, 6:].reshape((len(pred_bboxes), -1, 3))
                keypoints, scores = pred_joints[:,:,:2], pred_joints[:,:,-1]
                keypoints = keypoints / ratio
            else: # no detection
                keypoints, scores = np.zeros((0, 17, 2)), np.zeros((0, 17))

        return keypoints, scores

    def inference(self, img: np.ndarray):
            """Inference model.

            Args:
                img (np.ndarray): Input image in shape.

            Returns:
                outputs (np.ndarray): Output of RTMPose model.
            """
            # build input to (1, 3, H, W)
            img = img.transpose(2, 0, 1)
            img = np.ascontiguousarray(img, dtype=np.float32 if not self.is_yolo_nas_pose else np.uint8)
            input = img[None, :, :, :]

            # Create an IO Binding object
            io_binding = self.session.io_binding()

            if not self.is_yolo_nas_pose:
                # RTMO
                io_binding.bind_input(name='input', device_type='cpu', device_id=0, element_type=np.float32, shape=input.shape, buffer_ptr=input.ctypes.data)
                io_binding.bind_output(name='dets')
                io_binding.bind_output(name='keypoints')
            else:
                # NAS Pose, flat format
                io_binding.bind_input(name='input', device_type='cpu', device_id=0, element_type=np.uint8, shape=input.shape, buffer_ptr=input.ctypes.data)
                io_binding.bind_output(name='graph2_flat_predictions')

            # Run inference with IO Binding
            self.session.run_with_iobinding(io_binding)

            # Retrieve the outputs from the IO Binding object
            outputs = [output.numpy() for output in io_binding.get_outputs()]
        
            return outputs

    def __call__(self, image: np.ndarray):
            image, ratio = self.preprocess(image)

        
            outputs = self.inference(image)

            keypoints, scores = self.postprocess(outputs, ratio)

            return keypoints, scores
    
    def __init__(self,
                 onnx_model: str = None,
                 model_input_size: tuple = (640, 640),
                 mean: tuple = None,
                 std: tuple = None,
                 device: str = 'cuda',
                 is_yolo_nas_pose = False):
        
        if not os.path.exists(onnx_model):
            # If the file does not exist, raise FileNotFoundError
            raise FileNotFoundError(f"The specified ONNX model file was not found: {onnx_model}")

        providers = {'cpu': 'CPUExecutionProvider',
                        'cuda': [
                                    ('TensorrtExecutionProvider', {
                                    'trt_fp16_enable':True,
                                    'trt_engine_cache_enable':True,
                                    'trt_engine_cache_path':'cache'}),
                                    ('CUDAExecutionProvider', {
                                    'cudnn_conv_algo_search': 'DEFAULT',
                                    'cudnn_conv_use_max_workspace': True
                                }),
                                'CPUExecutionProvider']}
        
        self.session = ort.InferenceSession(path_or_bytes=onnx_model,
                                            providers=providers[device])

        self.onnx_model = onnx_model
        self.model_input_size = model_input_size
        self.mean = mean
        self.std = std
        self.device = device
        self.is_yolo_nas_pose = is_yolo_nas_pose

class RTMO_GPU_Batch(RTMO_GPU):
    def preprocess_batch(self, imgs: List[np.ndarray]) -> Tuple[np.ndarray, List[float]]:
        """Process a batch of images for RTMPose model inference.

        Args:
            imgs (List[np.ndarray]): List of input images.

        Returns:
            tuple:
            - batch_img (np.ndarray): Batch of preprocessed images.
            - ratios (List[float]): Ratios used for preprocessing each image.
        """
        batch_img = []
        ratios = []

        for img in imgs:
            preprocessed_img, ratio = super().preprocess(img)
            batch_img.append(preprocessed_img)
            ratios.append(ratio)

        # Stack along the first dimension to create a batch
        batch_img = np.stack(batch_img, axis=0)

        return batch_img, ratios

    def inference(self, batch_img: np.ndarray):
        """Override to handle batch inference.

        Args:
            batch_img (np.ndarray): Batch of preprocessed images.

        Returns:
            outputs (List[np.ndarray]): Outputs of RTMPose model for each image.
        """
        batch_img = batch_img.transpose(0, 3, 1, 2)  # NCHW format
        batch_img = np.ascontiguousarray(batch_img, dtype=np.float32)

        input = batch_img

        # Create an IO Binding object
        io_binding = self.session.io_binding()

        # Bind the model inputs and outputs to the IO Binding object
        io_binding.bind_input(name='input', device_type='cpu', device_id=0, element_type=np.float32, shape=input.shape, buffer_ptr=input.ctypes.data)
        io_binding.bind_output(name='dets')
        io_binding.bind_output(name='keypoints')

        # Run inference with IO Binding
        self.session.run_with_iobinding(io_binding)

        # Retrieve the outputs from the IO Binding object
        outputs = [output.numpy() for output in io_binding.get_outputs()]
    
        return outputs

    def postprocess_batch(
        self,
        outputs: List[np.ndarray],
        ratios: List[float]
    ) -> List[Tuple[np.ndarray, np.ndarray]]:
        """Process outputs for a batch of images.

        Args:
            outputs (List[np.ndarray]): Outputs from the model for each image.
            ratios (List[float]): Ratios used for preprocessing each image.

        Returns:
            List[Tuple[np.ndarray, np.ndarray]]: keypoints and scores for each image.
        """
        batch_keypoints = []
        batch_scores = []

        for i, ratio in enumerate(ratios):
            keypoints, scores = super().postprocess(outputs, ratio)
            batch_keypoints.append(keypoints)
            batch_scores.append(scores)

        return batch_keypoints, batch_scores

    def __call__(self, images: List[np.ndarray]):
        batch_img, ratios = self.preprocess_batch(images)
        outputs = self.inference(batch_img)
        keypoints, scores = self.postprocess_batch(outputs, ratios)
        return keypoints, scores