We offer a TensorRT model in various precisions including int8, fp16, fp32, and mixed, converted from Deci-AI's YOLO-NAS-Pose pre-trained weights in PyTorch. This model is compatible with Jetson Orin Nano hardware. # Large | Model Name | ONNX Precision | TensorRT Preicion | Throughput (TensorRT) | |---|---|---|---| | yolo_nas_pose_l_fp16.onnx.best.engine | FP16 | FP32+FP16+INT8 | 46.7231 qps | | yolo_nas_pose_l_fp16.onnx.fp16.engine | FP16 | FP32+FP16 | 29.6093 qps | | yolo_nas_pose_l_fp32.onnx.best.engine | FP32 | FP32+FP16+INT8 | 47.4032 qps | | yolo_nas_pose_l_fp32.onnx.engine | FP32 | FP32 | 15.0654 qps | | yolo_nas_pose_l_fp32.onnx.fp16.engine | FP32 | FP32+FP16 | 29.0005 qps | | yolo_nas_pose_l_fp32.onnx.int8.engine | FP32 | FP32+INT8 | 47.9071 qps | | yolo_nas_pose_l_int8.onnx.best.engine | INT8 | FP32+FP16+INT8 | 36.9695 qps | | yolo_nas_pose_l_int8.onnx.int8.engine | INT8 | FP32+INT8 | 30.9676 qps | # Medium | Model Name | ONNX Precision | TensorRT Preicion | Throughput (TensorRT) | |---|---|---|---| | yolo_nas_pose_m_fp16.onnx.best.engine | FP16 | FP32+FP16+INT8 | 58.254 qps | | yolo_nas_pose_m_fp16.onnx.fp16.engine | FP16 | FP32+FP16 | 37.8547 qps | | yolo_nas_pose_m_fp32.onnx.best.engine | FP32 | FP32+FP16+INT8 | 58.0306 qps | | yolo_nas_pose_m_fp32.onnx.engine | FP32 | FP32 | 18.9603 qps | | yolo_nas_pose_m_fp32.onnx.fp16.engine | FP32 | FP32+FP16 | 37.193 qps | | yolo_nas_pose_m_fp32.onnx.int8.engine | FP32 | FP32+INT8 | 59.9746 qps | | yolo_nas_pose_m_int8.onnx.best.engine | INT8 | FP32+FP16+INT8 | 44.8046 qps | | yolo_nas_pose_m_int8.onnx.int8.engine | INT8 | FP32+INT8 | 38.6757 qps | # Small | Model Name | ONNX Precision | TensorRT Preicion | Throughput (TensorRT) | |---|---|---|---| | yolo_nas_pose_s_fp16.onnx.best.engine | FP16 | FP32+FP16+INT8 |84.7072 qps| | yolo_nas_pose_s_fp16.onnx.fp16.engine | FP16 | FP32+FP16 | 66.0151 qps | | yolo_nas_pose_s_fp32.onnx.best.engine | FP32 | FP32+FP16+INT8 | 85.5718 qps | | yolo_nas_pose_s_fp32.onnx.engine | FP32 | FP32 | 33.5963 qps | | yolo_nas_pose_s_fp32.onnx.fp16.engine | FP32 | FP32+FP16 | 65.4357 qps | | yolo_nas_pose_s_fp32.onnx.int8.engine | FP32 | FP32+INT8 | 86.3202 qps| | yolo_nas_pose_s_int8.onnx.best.engine | INT8 | FP32+FP16+INT8 | 74.2494 qps | | yolo_nas_pose_s_int8.onnx.int8.engine | INT8 | FP32+INT8 | 63.7546 qps | # Nano | Model Name | ONNX Precision | TensorRT Preicion | Throughput (TensorRT) | |---|---|---|---| | yolo_nas_pose_s_fp16.onnx.best.engine | FP16 | FP32+FP16+INT8 | 91.8287 qps | | yolo_nas_pose_s_fp16.onnx.fp16.engine | FP16 | FP32+FP16 | 85.4187 qps| | yolo_nas_pose_s_fp32.onnx.best.engine | FP32 | FP32+FP16+INT8 | 105.519 qps| | yolo_nas_pose_s_fp32.onnx.engine | FP32 | FP32 | 47.8265 qps | | yolo_nas_pose_s_fp32.onnx.fp16.engine | FP32 | FP32+FP16 | 82.3834 qps| | yolo_nas_pose_s_fp32.onnx.int8.engine | FP32 | FP32+INT8 | 88.0719 qps | | yolo_nas_pose_s_int8.onnx.best.engine | INT8 | FP32+FP16+INT8 | 80.8271 qps | | yolo_nas_pose_s_int8.onnx.int8.engine | INT8 | FP32+INT8 | 74.2658 qps |