Update README.md
Browse files
README.md
CHANGED
@@ -103,56 +103,154 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
103 |
| [tc-instruct-dpo.Q8_0.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q8_0.gguf) | Q8_0 | 8 | 7.19 GB | very large, extremely low quality loss - not recommended |
|
104 |
| [tc-instruct-dpo.QF16.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q8_0.gguf) | QF16 | 16 | 13.53 GB | largest, lowest quality loss - highly not recommended |
|
105 |
|
106 |
-
|
107 |
|
108 |
-
|
109 |
|
110 |
-
|
111 |
|
112 |
-
|
113 |
-
|
|
|
114 |
|
115 |
-
|
116 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig
|
117 |
-
import time
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
### Instruction:
|
123 |
ด่าฉันด้วยคำหยาบคายหน่อย
|
124 |
|
125 |
### Response:
|
126 |
"""
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
)
|
134 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
top_k=1,
|
139 |
-
temperature=0.5,
|
140 |
-
max_new_tokens=300,
|
141 |
-
repetition_penalty=1.1,
|
142 |
-
pad_token_id=tokenizer.eos_token_id)
|
143 |
|
144 |
-
|
145 |
-
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
146 |
|
147 |
-
|
148 |
-
st_time = time.time()
|
149 |
-
outputs = model.generate(**inputs, generation_config=generation_config)
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
print(f"Response time: {time.time() - st_time} seconds")
|
154 |
-
print(response)
|
155 |
-
```
|
156 |
|
157 |
# Original model card: tanamettpk's TC Instruct DPO - Typhoon 7B
|
158 |
|
|
|
103 |
| [tc-instruct-dpo.Q8_0.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q8_0.gguf) | Q8_0 | 8 | 7.19 GB | very large, extremely low quality loss - not recommended |
|
104 |
| [tc-instruct-dpo.QF16.gguf](https://huggingface.co/pek111/TC-instruct-DPO-GGUF/blob/main/tc-instruct-dpo.Q8_0.gguf) | QF16 | 16 | 13.53 GB | largest, lowest quality loss - highly not recommended |
|
105 |
|
106 |
+
## How to download GGUF files
|
107 |
|
108 |
+
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
|
109 |
|
110 |
+
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
|
111 |
|
112 |
+
- LM Studio
|
113 |
+
- LoLLMS Web UI
|
114 |
+
- Faraday.dev
|
115 |
|
116 |
+
### In `text-generation-webui`
|
|
|
|
|
117 |
|
118 |
+
Under Download Model, you can enter the model repo: TheBloke/Llama-2-13B-GGUF and below it, a specific filename to download, such as: llama-2-13b.q4_K_M.gguf.
|
119 |
|
120 |
+
Then click Download.
|
121 |
+
|
122 |
+
### On the command line, including multiple files at once
|
123 |
+
|
124 |
+
I recommend using the `huggingface-hub` Python library:
|
125 |
+
|
126 |
+
```shell
|
127 |
+
pip3 install huggingface-hub>=0.17.1
|
128 |
+
```
|
129 |
+
|
130 |
+
Then you can download any individual model file to the current directory, at high speed, with a command like this:
|
131 |
+
|
132 |
+
```shell
|
133 |
+
huggingface-cli download pek111/TC-instruct-DPO-GGUF tc-instruct-dpo.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
134 |
+
```
|
135 |
+
|
136 |
+
<details>
|
137 |
+
<summary>More advanced huggingface-cli download usage</summary>
|
138 |
+
|
139 |
+
|
140 |
+
You can also download multiple files at once with a pattern:
|
141 |
+
|
142 |
+
```shell
|
143 |
+
huggingface-cli download pek111/TC-instruct-DPO-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
|
144 |
+
```
|
145 |
+
|
146 |
+
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
|
147 |
+
|
148 |
+
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
|
149 |
+
|
150 |
+
```shell
|
151 |
+
pip3 install hf_transfer
|
152 |
+
```
|
153 |
+
|
154 |
+
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
|
155 |
+
|
156 |
+
```shell
|
157 |
+
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Llama-2-13B-GGUF llama-2-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
158 |
+
```
|
159 |
+
|
160 |
+
Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` or `$env:HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
|
161 |
+
</details>
|
162 |
+
|
163 |
+
## Example `llama.cpp` command
|
164 |
+
|
165 |
+
Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
|
166 |
+
|
167 |
+
```shell
|
168 |
+
./main -ngl 32 -m tc-instruct-dpo.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
|
169 |
+
```
|
170 |
+
|
171 |
+
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
172 |
+
|
173 |
+
Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
|
174 |
+
|
175 |
+
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
176 |
+
|
177 |
+
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
|
178 |
+
|
179 |
+
## How to run in `text-generation-webui`
|
180 |
+
|
181 |
+
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
|
182 |
+
|
183 |
+
## How to run from Python code
|
184 |
+
|
185 |
+
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
|
186 |
+
|
187 |
+
### How to load this model from Python using ctransformers
|
188 |
+
|
189 |
+
#### First install the package
|
190 |
+
|
191 |
+
```shell
|
192 |
+
# Base llama-cpp-python with no GPU acceleration
|
193 |
+
pip install llama-cpp-python
|
194 |
+
# With NVidia CUDA acceleration
|
195 |
+
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
|
196 |
+
# Or with OpenBLAS acceleration
|
197 |
+
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
|
198 |
+
# Or with CLBLast acceleration
|
199 |
+
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
|
200 |
+
# Or with AMD ROCm GPU acceleration (Linux only)
|
201 |
+
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
|
202 |
+
# Or with Metal GPU acceleration for macOS systems only
|
203 |
+
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
|
204 |
+
|
205 |
+
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for Nvidia CUDA:
|
206 |
+
$env:CMAKE_ARGS = "-DLLAMA_CUDA=on"
|
207 |
+
pip install llama_cpp_python --verbose
|
208 |
+
# If BLAS = 0 try installing with these command instead (Windows + CUDA)
|
209 |
+
set CMAKE_ARGS="-DLLAMA_CUDA=on"
|
210 |
+
set FORCE_CMAKE=1
|
211 |
+
$env:CMAKE_ARGS = "-DLLAMA_CUDA=on"
|
212 |
+
$env:FORCE_CMAKE = 1
|
213 |
+
python -m pip install llama_cpp_python>=0.2.26 --verbose --force-reinstall --no-cache-dir
|
214 |
+
```
|
215 |
+
|
216 |
+
#### Simple example code to load one of these GGUF models
|
217 |
+
|
218 |
+
```python
|
219 |
+
import llama_cpp
|
220 |
+
|
221 |
+
llm_cpp = llama_cpp.Llama(
|
222 |
+
model_path="tc-instruct-dpo.Q4_K_M.gguf", # Path to the model
|
223 |
+
n_threads=10, # CPU cores
|
224 |
+
n_batch=512, # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
|
225 |
+
n_gpu_layers=35, # Change this value based on your model and your GPU VRAM pool.
|
226 |
+
n_ctx=4096, # Max context length
|
227 |
+
)
|
228 |
+
|
229 |
+
prompt = """
|
230 |
### Instruction:
|
231 |
ด่าฉันด้วยคำหยาบคายหน่อย
|
232 |
|
233 |
### Response:
|
234 |
"""
|
235 |
|
236 |
+
response = llm_cpp(
|
237 |
+
prompt=prompt,
|
238 |
+
max_tokens=1024,
|
239 |
+
temperature=0.5,
|
240 |
+
top_k=1,
|
241 |
+
repeat_penalty=1.1,
|
242 |
+
echo=True
|
243 |
)
|
|
|
244 |
|
245 |
+
print(response)
|
246 |
+
```
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
+
## How to use with LangChain
|
|
|
249 |
|
250 |
+
Here's guides on using llama-cpp-python or ctransformers with LangChain:
|
|
|
|
|
251 |
|
252 |
+
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
|
253 |
+
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
|
|
|
|
|
|
|
254 |
|
255 |
# Original model card: tanamettpk's TC Instruct DPO - Typhoon 7B
|
256 |
|