File size: 2,351 Bytes
8a03b50 fb0ff04 8a03b50 f646a69 8a03b50 c613557 8a03b50 c613557 8a03b50 f646a69 8a03b50 c613557 c2fbd3b f646a69 8a03b50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
- xls_r_repro_common_voice_tr
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-common_voice-tr-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-common_voice-tr-ft
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4179
- Wer: 0.3071
- Cer: 0.0736
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.7638 | 9.09 | 500 | 0.4763 | 0.5313 | 0.1333 |
| 0.5739 | 18.18 | 1000 | 0.4007 | 0.4357 | 0.1099 |
| 0.4343 | 27.27 | 1500 | 0.3819 | 0.4060 | 0.1012 |
| 0.4401 | 36.36 | 2000 | 0.3991 | 0.3954 | 0.1001 |
| 0.2647 | 45.45 | 2500 | 0.3901 | 0.3689 | 0.0914 |
| 0.2656 | 54.55 | 3000 | 0.4284 | 0.3463 | 0.0852 |
| 0.2586 | 63.64 | 3500 | 0.4084 | 0.3297 | 0.0804 |
| 0.2041 | 72.73 | 4000 | 0.3907 | 0.3193 | 0.0781 |
| 0.4265 | 81.82 | 4500 | 0.4265 | 0.3120 | 0.0755 |
| 0.2041 | 90.91 | 5000 | 0.4240 | 0.3071 | 0.0736 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.15.2.dev0
- Tokenizers 0.10.3
|