File size: 3,103 Bytes
8a03b50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
language:
- tr
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-common_voice-tr-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-common_voice-tr-ft
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3644
- Wer: 0.3394
- Cer: 0.0811
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 1.6613 | 4.59 | 500 | 0.8079 | 0.8542 | 0.2504 |
| 1.3496 | 9.17 | 1000 | 0.4729 | 0.5968 | 0.1518 |
| 1.1003 | 13.76 | 1500 | 0.4106 | 0.5225 | 0.1357 |
| 1.1532 | 18.35 | 2000 | 0.3957 | 0.4978 | 0.1256 |
| 1.0305 | 22.94 | 2500 | 0.3764 | 0.5008 | 0.1291 |
| 0.8303 | 27.52 | 3000 | 0.3826 | 0.5113 | 0.1292 |
| 0.9115 | 32.11 | 3500 | 0.3819 | 0.4324 | 0.1070 |
| 0.8193 | 36.7 | 4000 | 0.3694 | 0.4223 | 0.1036 |
| 0.8948 | 41.28 | 4500 | 0.3714 | 0.4100 | 0.1005 |
| 0.774 | 45.87 | 5000 | 0.3558 | 0.3923 | 0.0971 |
| 0.8194 | 50.46 | 5500 | 0.3729 | 0.4603 | 0.1180 |
| 0.8616 | 55.05 | 6000 | 0.3616 | 0.3908 | 0.0963 |
| 0.7901 | 59.63 | 6500 | 0.3575 | 0.3837 | 0.0952 |
| 0.778 | 64.22 | 7000 | 0.3732 | 0.3790 | 0.0928 |
| 0.7238 | 68.81 | 7500 | 0.3674 | 0.3734 | 0.0904 |
| 0.6985 | 73.39 | 8000 | 0.3627 | 0.3615 | 0.0863 |
| 0.5889 | 77.98 | 8500 | 0.3705 | 0.3548 | 0.0858 |
| 0.5447 | 82.57 | 9000 | 0.3678 | 0.3534 | 0.0854 |
| 0.4763 | 87.16 | 9500 | 0.3627 | 0.3509 | 0.0840 |
| 0.3544 | 91.74 | 10000 | 0.3690 | 0.3495 | 0.0834 |
| 0.4879 | 96.33 | 10500 | 0.3683 | 0.3418 | 0.0820 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.15.2.dev0
- Tokenizers 0.10.3
|