|
# Persian-to-Image Text-to-Image Pipeline |
|
|
|
## Model Overview |
|
|
|
This model pipeline is designed to generate images from Persian text descriptions. It works by first translating the Persian text into English and then using a fine-tuned Stable Diffusion model to generate the corresponding image. The pipeline combines two models: a translation model (`mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq`) and an image generation model (`ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en`). |
|
|
|
## Model Details |
|
|
|
### Translation Model |
|
- **Model Name**: `mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq` |
|
- **Architecture**: mT5 |
|
- **Purpose**: This model translates Persian text into English. It has been fine-tuned on the CelebA-HQ dataset for summarization tasks, making it effective for translating descriptions of facial features. |
|
|
|
### Image Generation Model |
|
- **Model Name**: `ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en` |
|
- **Architecture**: Stable Diffusion 1.5 |
|
- **Purpose**: This model generates high-quality images from English text produced by the translation model. It has been fine-tuned on the CelebA-HQ dataset, which makes it particularly effective for generating realistic human faces based on text descriptions. |
|
|
|
## Pipeline Description |
|
|
|
The pipeline operates through the following steps: |
|
|
|
1. **Text Translation**: The Persian input text is translated into English using the mT5-based translation model. |
|
2. **Image Generation**: The translated English text is then used to generate the corresponding image with the Stable Diffusion model. |
|
|
|
### Code Implementation |
|
|
|
#### 1. Install Required Libraries |
|
|
|
```python |
|
!pip install transformers diffusers accelerate torch |
|
``` |
|
#### 2. Import Necessary Libraries |
|
|
|
```python |
|
import torch |
|
from transformers import MT5ForConditionalGeneration, T5Tokenizer |
|
from diffusers import StableDiffusionPipeline |
|
``` |
|
|
|
#### 3. Set Device (GPU or CPU) |
|
This code determines whether the pipeline should use a GPU (if available) or fallback to a CPU. |
|
|
|
```python |
|
# Determine the device: GPU if available, otherwise CPU |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {device}") |
|
``` |
|
|
|
#### 4. Define and Load the Persian-to-Image Model Class |
|
The following class handles both translation and image generation tasks. |
|
|
|
```python |
|
# Define the model class |
|
class PersianToImageModel: |
|
def __init__(self, translation_model_name, image_model_name, device): |
|
self.device = device |
|
|
|
# Load translation model |
|
self.translation_model = MT5ForConditionalGeneration.from_pretrained(translation_model_name).to(device) |
|
self.translation_tokenizer = T5Tokenizer.from_pretrained(translation_model_name) |
|
|
|
# Load image generation model |
|
self.image_model = StableDiffusionPipeline.from_pretrained(image_model_name).to(device) |
|
|
|
def translate_text(self, persian_text): |
|
input_ids = self.translation_tokenizer.encode(persian_text, return_tensors="pt").to(self.device) |
|
translated_ids = self.translation_model.generate(input_ids, max_length=512, num_beams=4, early_stopping=True) |
|
translated_text = self.translation_tokenizer.decode(translated_ids[0], skip_special_tokens=True) |
|
return translated_text |
|
|
|
def generate_image(self, english_text): |
|
image = self.image_model(english_text).images[0] |
|
return image |
|
|
|
def __call__(self, persian_text): |
|
# Translate Persian text to English |
|
english_text = self.translate_text(persian_text) |
|
print(f"Translated Text: {english_text}") |
|
|
|
# Generate and return image |
|
return self.generate_image(english_text) |
|
``` |
|
#### 5. Instantiate the Model |
|
The following code snippet demonstrates how to instantiate the combined model. |
|
|
|
```python |
|
# Instantiate the combined model |
|
translation_model_name = 'mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq' |
|
image_model_name = 'ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en' |
|
|
|
persian_to_image_model = PersianToImageModel(translation_model_name, image_model_name, device) |
|
``` |
|
#### 6. Example Usage of the Model |
|
Below are examples of how to use the model to generate images from Persian text. |
|
|
|
```python |
|
from IPython.display import display |
|
|
|
# Persian text describing a person |
|
persian_text = "این زن دارای موهای موج دار ، لب های بزرگ و موهای قهوه ای است و رژ لب دارد.این زن موهای موج دار و لب های بزرگ دارد و رژ لب دارد.فرد جذاب است و موهای موج دار ، چشم های باریک و موهای قهوه ای دارد." |
|
|
|
# Generate and display the image |
|
image = persian_to_image_model(persian_text) |
|
display(image) |
|
|
|
# Another example |
|
persian_text2 = "این مرد جذاب دارای موهای قهوه ای ، سوزش های جانبی ، دهان کمی باز و کیسه های زیر چشم است.این فرد جذاب دارای کیسه های زیر چشم ، سوزش های جانبی و دهان کمی باز است." |
|
image2 = persian_to_image_model(persian_text2) |
|
display(image2) |
|
``` |