sinaghassemi96's picture
Create README.md
e1a22f4 verified
# Persian-to-Image Text-to-Image Pipeline
## Model Overview
This model pipeline is designed to generate images from Persian text descriptions. It works by first translating the Persian text into English and then using a fine-tuned Stable Diffusion model to generate the corresponding image. The pipeline combines two models: a translation model (`mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq`) and an image generation model (`ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en`).
## Model Details
### Translation Model
- **Model Name**: `mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq`
- **Architecture**: mT5
- **Purpose**: This model translates Persian text into English. It has been fine-tuned on the CelebA-HQ dataset for summarization tasks, making it effective for translating descriptions of facial features.
### Image Generation Model
- **Model Name**: `ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en`
- **Architecture**: Stable Diffusion 1.5
- **Purpose**: This model generates high-quality images from English text produced by the translation model. It has been fine-tuned on the CelebA-HQ dataset, which makes it particularly effective for generating realistic human faces based on text descriptions.
## Pipeline Description
The pipeline operates through the following steps:
1. **Text Translation**: The Persian input text is translated into English using the mT5-based translation model.
2. **Image Generation**: The translated English text is then used to generate the corresponding image with the Stable Diffusion model.
### Code Implementation
#### 1. Install Required Libraries
```python
!pip install transformers diffusers accelerate torch
```
#### 2. Import Necessary Libraries
```python
import torch
from transformers import MT5ForConditionalGeneration, T5Tokenizer
from diffusers import StableDiffusionPipeline
```
#### 3. Set Device (GPU or CPU)
This code determines whether the pipeline should use a GPU (if available) or fallback to a CPU.
```python
# Determine the device: GPU if available, otherwise CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
```
#### 4. Define and Load the Persian-to-Image Model Class
The following class handles both translation and image generation tasks.
```python
# Define the model class
class PersianToImageModel:
def __init__(self, translation_model_name, image_model_name, device):
self.device = device
# Load translation model
self.translation_model = MT5ForConditionalGeneration.from_pretrained(translation_model_name).to(device)
self.translation_tokenizer = T5Tokenizer.from_pretrained(translation_model_name)
# Load image generation model
self.image_model = StableDiffusionPipeline.from_pretrained(image_model_name).to(device)
def translate_text(self, persian_text):
input_ids = self.translation_tokenizer.encode(persian_text, return_tensors="pt").to(self.device)
translated_ids = self.translation_model.generate(input_ids, max_length=512, num_beams=4, early_stopping=True)
translated_text = self.translation_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
def generate_image(self, english_text):
image = self.image_model(english_text).images[0]
return image
def __call__(self, persian_text):
# Translate Persian text to English
english_text = self.translate_text(persian_text)
print(f"Translated Text: {english_text}")
# Generate and return image
return self.generate_image(english_text)
```
#### 5. Instantiate the Model
The following code snippet demonstrates how to instantiate the combined model.
```python
# Instantiate the combined model
translation_model_name = 'mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq'
image_model_name = 'ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en'
persian_to_image_model = PersianToImageModel(translation_model_name, image_model_name, device)
```
#### 6. Example Usage of the Model
Below are examples of how to use the model to generate images from Persian text.
```python
from IPython.display import display
# Persian text describing a person
persian_text = "این زن دارای موهای موج دار ، لب های بزرگ و موهای قهوه ای است و رژ لب دارد.این زن موهای موج دار و لب های بزرگ دارد و رژ لب دارد.فرد جذاب است و موهای موج دار ، چشم های باریک و موهای قهوه ای دارد."
# Generate and display the image
image = persian_to_image_model(persian_text)
display(image)
# Another example
persian_text2 = "این مرد جذاب دارای موهای قهوه ای ، سوزش های جانبی ، دهان کمی باز و کیسه های زیر چشم است.این فرد جذاب دارای کیسه های زیر چشم ، سوزش های جانبی و دهان کمی باز است."
image2 = persian_to_image_model(persian_text2)
display(image2)
```