Papers
arxiv:2409.03525

FrozenSeg: Harmonizing Frozen Foundation Models for Open-Vocabulary Segmentation

Published on Sep 5
· Submitted by happy0612 on Sep 6
Authors:
,

Abstract

Open-vocabulary segmentation poses significant challenges, as it requires segmenting and recognizing objects across an open set of categories in unconstrained environments. Building on the success of powerful vision-language (ViL) foundation models, such as CLIP, recent efforts sought to harness their zero-short capabilities to recognize unseen categories. Despite notable performance improvements, these models still encounter the critical issue of generating precise mask proposals for unseen categories and scenarios, resulting in inferior segmentation performance eventually. To address this challenge, we introduce a novel approach, FrozenSeg, designed to integrate spatial knowledge from a localization foundation model (e.g., SAM) and semantic knowledge extracted from a ViL model (e.g., CLIP), in a synergistic framework. Taking the ViL model's visual encoder as the feature backbone, we inject the space-aware feature into the learnable queries and CLIP features within the transformer decoder. In addition, we devise a mask proposal ensemble strategy for further improving the recall rate and mask quality. To fully exploit pre-trained knowledge while minimizing training overhead, we freeze both foundation models, focusing optimization efforts solely on a lightweight transformer decoder for mask proposal generation-the performance bottleneck. Extensive experiments demonstrate that FrozenSeg advances state-of-the-art results across various segmentation benchmarks, trained exclusively on COCO panoptic data, and tested in a zero-shot manner. Code is available at https://github.com/chenxi52/FrozenSeg.

Community

Paper author Paper submitter

Open-vocabulary segmentation is challenging, with the need of segmenting and recognizing objects for an open set of categories in unconstrained environments. Building on the success of powerful vision-language (ViL) foundation models like CLIP, recent efforts sought to harness their zero-short capabilities to recognize unseen categories. Despite demonstrating strong performances, they still face a fundamental challenge of generating precise mask proposals for unseen categories and scenarios, resulting in inferior segmentation performance eventually. To address this, we introduce a novel approach, FrozenSeg, designed to integrate spatial knowledge from a localization foundation model (e.g., SAM) and semantic knowledge extracted from a ViL model (e.g., CLIP), in a synergistic framework. Taking the ViL model's visual encoder as the feature backbone, we inject the space-aware feature into learnable query and CLIP feature in the transformer decoder. In addition, we devise a mask proposal ensemble strategy for further improving the recall rate and mask quality. To fully exploit pre-trained knowledge while minimizing training overhead, we freeze both foundation models, focusing optimization efforts solely on a light transformer decoder for mask proposal generation – the performance bottleneck. Extensive experiments show that FrozenSeg advances state-of-the-art results across various segmentation benchmarks, trained exclusively on COCO panoptic data and tested in a zero-shot manner. https://github.com/chenxi52/FrozenSeg.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2409.03525 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2409.03525 in a dataset README.md to link it from this page.

Spaces citing this paper 1

Collections including this paper 1