Papers
arxiv:2311.07215

Coffee: Boost Your Code LLMs by Fixing Bugs with Feedback

Published on Nov 13, 2023
Authors:
,
,
,
,
,

Abstract

Code editing is an essential step towards reliable program synthesis to automatically correct critical errors generated from code LLMs. Recent studies have demonstrated that closed-source LLMs (i.e., ChatGPT and GPT-4) are capable of generating corrective feedback to edit erroneous inputs. However, it remains challenging for open-source code LLMs to generate feedback for code editing, since these models tend to adhere to the superficial formats of feedback and provide feedback with misleading information. Hence, the focus of our work is to leverage open-source code LLMs to generate helpful feedback with correct guidance for code editing. To this end, we present Coffee, a collected dataset specifically designed for code fixing with feedback. Using this dataset, we construct CoffeePots, a framework for COde Fixing with FEEdback via Preference-Optimized Tuning and Selection. The proposed framework aims to automatically generate helpful feedback for code editing while minimizing the potential risk of superficial feedback. The combination of Coffee and CoffeePots marks a significant advancement, achieving state-of-the-art performance on HumanEvalFix benchmark. Codes and model checkpoints are publicly available at https://github.com/Lune-Blue/COFFEE.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2311.07215 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2311.07215 in a Space README.md to link it from this page.

Collections including this paper 1