Abstract
We explore how continued pre-training on domain-specific corpora influences large language models, revealing that training on the raw corpora endows the model with domain knowledge, but drastically hurts its prompting ability for question answering. Taken inspiration from human learning via reading comprehension--practice after reading improves the ability to answer questions based on the learned knowledge--we propose a simple method for transforming raw corpora into reading comprehension texts. Each raw text is enriched with a series of tasks related to its content. Our method, highly scalable and applicable to any pre-training corpora, consistently enhances performance across various tasks in three different domains: biomedicine, finance, and law. Notably, our 7B language model achieves competitive performance with domain-specific models of much larger scales, such as BloombergGPT-50B. Furthermore, we demonstrate that domain-specific reading comprehension texts can improve the model's performance even on general benchmarks, showing the potential to develop a general model across even more domains. Our model, code, and data will be available at https://github.com/microsoft/LMOps.
Community
[2024/6/21]π€ We release the 2nd version of AdaptLLM at Instruction-Pretrain, effective for both pre-training from scratch and continual pre-trainingπ€
**************************** Updates ****************************
- 2024/6/22: Released the benchmarking code.
- 2024/6/21: Released the 2nd version of AdaptLLM at Instruction-Pretrain.
- 2024/4/2: Released the raw data splits (train and test) of all the evaluation datasets
- 2024/1/16: π Our research paper has been accepted by ICLR 2024 π
- 2023/12/19: Released our 13B base models developed from LLaMA-1-13B.
- 2023/12/8: Released our chat models developed from LLaMA-2-Chat-7B.
- 2023/9/18: Released our paper, code, data, and base models developed from LLaMA-1-7B.