Pankaj Mathur
commited on
Commit
•
55dc209
1
Parent(s):
c1ee8ac
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,65 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# alpaca_orca_open_llama: A Instruction-Following OpeLLaMA Model using Orca approaches on Alpaca dataset
|
2 |
+
|
3 |
+
|
4 |
+
# Dataset and Training
|
5 |
+
|
6 |
+
We train OpenLLaMa-3B model on the custom Alpaca dataset created using Orca Research Paper approaches.
|
7 |
+
Please pay attention how System prompt is added and used for each instruction.
|
8 |
+
The training configurations are provided in the table below.
|
9 |
+
The training takes on 4 x A600(50G) GPUs and lasts for around 20 Hours for cost of $66.
|
10 |
+
We used DeepSpeed with Zero-3 approaches for parallel gpu training.
|
11 |
+
|
12 |
+
|||
|
13 |
+
|:-------------:|:-------------:|
|
14 |
+
|**Batch Size**|16|
|
15 |
+
|**train_micro_batch_size_per_gpu**|2|
|
16 |
+
|**gradient_accumulation_steps**|2|
|
17 |
+
|**Learning rate**|2e-5|
|
18 |
+
|**Epochs**|3|
|
19 |
+
|**Max length**|1024|
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# Example Usage
|
24 |
+
|
25 |
+
Below shows an example on how to use OpenAlpaca
|
26 |
+
|
27 |
+
```python
|
28 |
+
import torch
|
29 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
30 |
+
|
31 |
+
# the previewed version of OpenAlpaca
|
32 |
+
model_path = r'psmathur/alpaca_orca_open_llama_3b'
|
33 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_path)
|
34 |
+
model = LlamaForCausalLM.from_pretrained(model_path).cuda()
|
35 |
+
tokenizer.bos_token_id, tokenizer.eos_token_id = 1,2 # see https://github.com/openlm-research/open_llama#preview-weights-release-and-usage
|
36 |
+
|
37 |
+
# same prompt as provided by Orca Research Paper
|
38 |
+
system = r'You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.'
|
39 |
+
instruction = r'Use the given data to calculate the median.'
|
40 |
+
input = r'[7, 3, 8, 2, 10]'
|
41 |
+
|
42 |
+
|
43 |
+
prompt_no_input = f'.\n\n### Instruction:\n{instruction}\n\n### Response:'
|
44 |
+
tokens = tokenizer.encode(prompt_no_input)
|
45 |
+
|
46 |
+
tokens = torch.LongTensor(tokens).unsqueeze(0)
|
47 |
+
instance = {'input_ids': tokens,
|
48 |
+
'top_k': 50,
|
49 |
+
'top_p': 0.9,
|
50 |
+
'generate_len': 128}
|
51 |
+
|
52 |
+
length = len(tokens[0])
|
53 |
+
with torch.no_grad():
|
54 |
+
rest = model.generate(
|
55 |
+
input_ids=tokens,
|
56 |
+
max_length=length+instance['generate_len'],
|
57 |
+
use_cache=True,
|
58 |
+
do_sample=True,
|
59 |
+
top_p=instance['top_p'],
|
60 |
+
top_k=instance['top_k']
|
61 |
+
)
|
62 |
+
|
63 |
+
output = rest[0][length:]
|
64 |
+
string = tokenizer.decode(output, skip_special_tokens=True)
|
65 |
+
print(f'[!] Generation results: {string}')
|