File size: 8,056 Bytes
a00dd6f 6dc8ab0 a00dd6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
base_model: ibm-granite/granite-3.0-8b-instruct
license: apache-2.0
pipeline_tag: text-generation
tags:
- language
- granite-3.0
quantized_model: AliNemati
inference: false
model-index:
- name: granite-3.0-2b-instruct
results:
- task:
type: text-generation
dataset:
name: IFEval
type: instruction-following
metrics:
- type: pass@1
value: 52.27
name: pass@1
- type: pass@1
value: 8.22
name: pass@1
- task:
type: text-generation
dataset:
name: AGI-Eval
type: human-exams
metrics:
- type: pass@1
value: 40.52
name: pass@1
- type: pass@1
value: 65.82
name: pass@1
- type: pass@1
value: 34.45
name: pass@1
- task:
type: text-generation
dataset:
name: OBQA
type: commonsense
metrics:
- type: pass@1
value: 46.6
name: pass@1
- type: pass@1
value: 71.21
name: pass@1
- type: pass@1
value: 82.61
name: pass@1
- type: pass@1
value: 77.51
name: pass@1
- type: pass@1
value: 60.32
name: pass@1
- task:
type: text-generation
dataset:
name: BoolQ
type: reading-comprehension
metrics:
- type: pass@1
value: 88.65
name: pass@1
- type: pass@1
value: 21.58
name: pass@1
- task:
type: text-generation
dataset:
name: ARC-C
type: reasoning
metrics:
- type: pass@1
value: 64.16
name: pass@1
- type: pass@1
value: 33.81
name: pass@1
- type: pass@1
value: 51.55
name: pass@1
- task:
type: text-generation
dataset:
name: HumanEvalSynthesis
type: code
metrics:
- type: pass@1
value: 64.63
name: pass@1
- type: pass@1
value: 57.16
name: pass@1
- type: pass@1
value: 65.85
name: pass@1
- type: pass@1
value: 49.6
name: pass@1
- task:
type: text-generation
dataset:
name: GSM8K
type: math
metrics:
- type: pass@1
value: 68.99
name: pass@1
- type: pass@1
value: 30.94
name: pass@1
- task:
type: text-generation
dataset:
name: PAWS-X (7 langs)
type: multilingual
metrics:
- type: pass@1
value: 64.94
name: pass@1
- type: pass@1
value: 48.2
name: pass@1
---
**osllm.ai Models Highlights Program**
**We believe there's no need to pay a token if you have a GPU on your computer.**
Highlighting new and noteworthy models from the community. Join the conversation on Discord.
**Model creator**: ibm-granite
**Original model**: granite-3.0-3b-a800m-instruct
<p align="center">
<a href="https://osllm.ai">Official Website</a> • <a href="https://docs.osllm.ai/index.html">Documentation</a> • <a href="https://discord.gg/2fftQauwDD">Discord</a>
</p>
<p align="center">
<b>NEW:</b> <a href="https://docs.google.com/forms/d/1CQXJvxLUqLBSXnjqQmRpOyZqD6nrKubLz2WTcIJ37fU/prefill">Subscribe to our mailing list</a> for updates and news!
</p>
Email: [email protected]
**Model Summary**:
Granite-3.0-8B-Instruct is an 8B parameter model finetuned from Granite-3.0-8B-Base using a combination of open-source instruction datasets with permissive licenses and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
**Technical Specifications**:
# Granite-3.0-8B-Instruct
**Model Summary:**
Granite-3.0-8B-Instruct is a 8B parameter model finetuned from *Granite-3.0-8B-Base* using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
- **Developers:** Granite Team, IBM
- **GitHub Repository:** [ibm-granite/granite-3.0-language-models](https://github.com/ibm-granite/granite-3.0-language-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Paper:** [Granite 3.0 Language Models](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf)
- **Release Date**: October 21st, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
**Supported Languages:**
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.0 models for languages beyond these 12 languages.
**Intended use:**
The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications.
*Capabilities*
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related tasks
* Function-calling tasks
* Multilingual dialog use cases
**About [osllm.ai](https://osllm.ai)**:
[osllm.ai](https://osllm.ai) is a community-driven platform that provides access to a wide range of open-source language models.
1. **[IndoxJudge](https://github.com/indoxJudge)**: A free, open-source tool for evaluating large language models (LLMs).
It provides key metrics to assess performance, reliability, and risks like bias and toxicity, helping ensure model safety.
1. **[inDox](https://github.com/inDox)**: An open-source retrieval augmentation tool for extracting data from various
document formats (text, PDFs, HTML, Markdown, LaTeX). It handles structured and unstructured data and supports both
online and offline LLMs.
1. **[IndoxGen](https://github.com/IndoxGen)**: A framework for generating high-fidelity synthetic data using LLMs and
human feedback, designed for enterprise use with high flexibility and precision.
1. **[Phoenix](https://github.com/Phoenix)**: A multi-platform, open-source chatbot that interacts with documents
locally, without internet or GPU. It integrates inDox and IndoxJudge to improve accuracy and prevent hallucinations,
ideal for sensitive fields like healthcare.
1. **[Phoenix_cli](https://github.com/Phoenix_cli)**: A multi-platform command-line tool that runs LLaMA models locally,
supporting up to eight concurrent tasks through multithreading, eliminating the need for cloud-based services.
**Special thanks**
🙏 Special thanks to [**Georgi Gerganov**](https://github.com/ggerganov) and the whole team working on [**llama.cpp**](https://github.com/ggerganov/llama.cpp) for making all of this possible.
**Disclaimers**
[osllm.ai](https://osllm.ai) is not the creator, originator, or owner of any Model featured in the Community Model Program.
Each Community Model is created and provided by third parties. osllm.ai does not endorse, support, represent,
or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand
that Community Models can produce content that might be offensive, harmful, inaccurate, or otherwise
inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who
originated such Model. osllm.ai may not monitor or control the Community Models and cannot, and does not, take
responsibility for any such Model. osllm.ai disclaims all warranties or guarantees about the accuracy,
reliability, or benefits of the Community Models. osllm.ai further disclaims any warranty that the Community
Model will meet your requirements, be secure, uninterrupted, or available at any time or location, or
error-free, virus-free, or that any errors will be corrected, or otherwise. You will be solely responsible for
any damage resulting from your use of or access to the Community Models, your downloading of any Community
Model, or use of any other Community Model provided by or through [osllm.ai](https://osllm.ai).
|