File size: 13,346 Bytes
aa60bbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import cv2
import numpy as np
import torch
from timm.data.constants import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data.transforms import RandomResizedCropAndInterpolation
from torchvision import transforms
import urllib
from tqdm import tqdm
from cpm_live.tokenizers import CPMBeeTokenizer
from torch.utils.data import default_collate
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing_extensions import TypedDict
from numpy.typing import NDArray
import importlib.machinery
import importlib.util
import types
import random
from transformers.image_utils import make_list_of_images
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from transformers import TensorType
import json


# aug functions
def identity_func(img):
    return img


def autocontrast_func(img, cutoff=0):
    '''
        same output as PIL.ImageOps.autocontrast
    '''
    n_bins = 256

    def tune_channel(ch):
        n = ch.size
        cut = cutoff * n // 100
        if cut == 0:
            high, low = ch.max(), ch.min()
        else:
            hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
            low = np.argwhere(np.cumsum(hist) > cut)
            low = 0 if low.shape[0] == 0 else low[0]
            high = np.argwhere(np.cumsum(hist[::-1]) > cut)
            high = n_bins - 1 if high.shape[0] == 0 else n_bins - 1 - high[0]
        if high <= low:
            table = np.arange(n_bins)
        else:
            scale = (n_bins - 1) / (high - low)
            table = np.arange(n_bins) * scale - low * scale
            table[table < 0] = 0
            table[table > n_bins - 1] = n_bins - 1
        table = table.clip(0, 255).astype(np.uint8)
        return table[ch]

    channels = [tune_channel(ch) for ch in cv2.split(img)]
    out = cv2.merge(channels)
    return out


def equalize_func(img):
    '''
        same output as PIL.ImageOps.equalize
        PIL's implementation is different from cv2.equalize
    '''
    n_bins = 256

    def tune_channel(ch):
        hist = cv2.calcHist([ch], [0], None, [n_bins], [0, n_bins])
        non_zero_hist = hist[hist != 0].reshape(-1)
        step = np.sum(non_zero_hist[:-1]) // (n_bins - 1)
        if step == 0:
            return ch
        n = np.empty_like(hist)
        n[0] = step // 2
        n[1:] = hist[:-1]
        table = (np.cumsum(n) // step).clip(0, 255).astype(np.uint8)
        return table[ch]

    channels = [tune_channel(ch) for ch in cv2.split(img)]
    out = cv2.merge(channels)
    return out


def rotate_func(img, degree, fill=(0, 0, 0)):
    '''
    like PIL, rotate by degree, not radians
    '''
    H, W = img.shape[0], img.shape[1]
    center = W / 2, H / 2
    M = cv2.getRotationMatrix2D(center, degree, 1)
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill)
    return out


def solarize_func(img, thresh=128):
    '''
        same output as PIL.ImageOps.posterize
    '''
    table = np.array([el if el < thresh else 255 - el for el in range(256)])
    table = table.clip(0, 255).astype(np.uint8)
    out = table[img]
    return out


def color_func(img, factor):
    '''
        same output as PIL.ImageEnhance.Color
    '''
    # implementation according to PIL definition, quite slow
    #  degenerate = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[:, :, np.newaxis]
    #  out = blend(degenerate, img, factor)
    #  M = (
    #      np.eye(3) * factor
    #      + np.float32([0.114, 0.587, 0.299]).reshape(3, 1) * (1. - factor)
    #  )[np.newaxis, np.newaxis, :]
    M = (
        np.float32([
            [0.886, -0.114, -0.114],
            [-0.587, 0.413, -0.587],
            [-0.299, -0.299, 0.701]]) * factor
        + np.float32([[0.114], [0.587], [0.299]])
    )
    out = np.matmul(img, M).clip(0, 255).astype(np.uint8)
    return out


def contrast_func(img, factor):
    """
        same output as PIL.ImageEnhance.Contrast
    """
    mean = np.sum(np.mean(img, axis=(0, 1)) * np.array([0.114, 0.587, 0.299]))
    table = np.array([(
        el - mean) * factor + mean
        for el in range(256)
    ]).clip(0, 255).astype(np.uint8)
    out = table[img]
    return out


def brightness_func(img, factor):
    '''
        same output as PIL.ImageEnhance.Contrast
    '''
    table = (np.arange(256, dtype=np.float32) * factor).clip(0, 255).astype(np.uint8)
    out = table[img]
    return out


def sharpness_func(img, factor):
    '''
    The differences the this result and PIL are all on the 4 boundaries, the center
    areas are same
    '''
    kernel = np.ones((3, 3), dtype=np.float32)
    kernel[1][1] = 5
    kernel /= 13
    degenerate = cv2.filter2D(img, -1, kernel)
    if factor == 0.0:
        out = degenerate
    elif factor == 1.0:
        out = img
    else:
        out = img.astype(np.float32)
        degenerate = degenerate.astype(np.float32)[1:-1, 1:-1, :]
        out[1:-1, 1:-1, :] = degenerate + factor * (out[1:-1, 1:-1, :] - degenerate)
        out = out.astype(np.uint8)
    return out


def shear_x_func(img, factor, fill=(0, 0, 0)):
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, factor, 0], [0, 1, 0]])
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
    return out


def translate_x_func(img, offset, fill=(0, 0, 0)):
    '''
        same output as PIL.Image.transform
    '''
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, -offset], [0, 1, 0]])
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
    return out


def translate_y_func(img, offset, fill=(0, 0, 0)):
    '''
        same output as PIL.Image.transform
    '''
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, 0], [0, 1, -offset]])
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
    return out


def posterize_func(img, bits):
    '''
        same output as PIL.ImageOps.posterize
    '''
    out = np.bitwise_and(img, np.uint8(255 << (8 - bits)))
    return out


def shear_y_func(img, factor, fill=(0, 0, 0)):
    H, W = img.shape[0], img.shape[1]
    M = np.float32([[1, 0, 0], [factor, 1, 0]])
    out = cv2.warpAffine(img, M, (W, H), borderValue=fill, flags=cv2.INTER_LINEAR).astype(np.uint8)
    return out


def cutout_func(img, pad_size, replace=(0, 0, 0)):
    replace = np.array(replace, dtype=np.uint8)
    H, W = img.shape[0], img.shape[1]
    rh, rw = np.random.random(2)
    pad_size = pad_size // 2
    ch, cw = int(rh * H), int(rw * W)
    x1, x2 = max(ch - pad_size, 0), min(ch + pad_size, H)
    y1, y2 = max(cw - pad_size, 0), min(cw + pad_size, W)
    out = img.copy()
    out[x1:x2, y1:y2, :] = replace
    return out


# level to args
def enhance_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        return ((level / MAX_LEVEL) * 1.8 + 0.1,)
    return level_to_args


def shear_level_to_args(MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * 0.3
        if np.random.random() > 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


def translate_level_to_args(translate_const, MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * float(translate_const)
        if np.random.random() > 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


def cutout_level_to_args(cutout_const, MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * cutout_const)
        return (level, replace_value)

    return level_to_args


def solarize_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * 256)
        return (level, )
    return level_to_args


def none_level_to_args(level):
    return ()


def posterize_level_to_args(MAX_LEVEL):
    def level_to_args(level):
        level = int((level / MAX_LEVEL) * 4)
        return (level, )
    return level_to_args


def rotate_level_to_args(MAX_LEVEL, replace_value):
    def level_to_args(level):
        level = (level / MAX_LEVEL) * 30
        if np.random.random() < 0.5:
            level = -level
        return (level, replace_value)

    return level_to_args


func_dict = {
    'Identity': identity_func,
    'AutoContrast': autocontrast_func,
    'Equalize': equalize_func,
    'Rotate': rotate_func,
    'Solarize': solarize_func,
    'Color': color_func,
    'Contrast': contrast_func,
    'Brightness': brightness_func,
    'Sharpness': sharpness_func,
    'ShearX': shear_x_func,
    'TranslateX': translate_x_func,
    'TranslateY': translate_y_func,
    'Posterize': posterize_func,
    'ShearY': shear_y_func,
}

translate_const = 10
MAX_LEVEL = 10
replace_value = (128, 128, 128)
arg_dict = {
    'Identity': none_level_to_args,
    'AutoContrast': none_level_to_args,
    'Equalize': none_level_to_args,
    'Rotate': rotate_level_to_args(MAX_LEVEL, replace_value),
    'Solarize': solarize_level_to_args(MAX_LEVEL),
    'Color': enhance_level_to_args(MAX_LEVEL),
    'Contrast': enhance_level_to_args(MAX_LEVEL),
    'Brightness': enhance_level_to_args(MAX_LEVEL),
    'Sharpness': enhance_level_to_args(MAX_LEVEL),
    'ShearX': shear_level_to_args(MAX_LEVEL, replace_value),
    'TranslateX': translate_level_to_args(
        translate_const, MAX_LEVEL, replace_value
    ),
    'TranslateY': translate_level_to_args(
        translate_const, MAX_LEVEL, replace_value
    ),
    'Posterize': posterize_level_to_args(MAX_LEVEL),
    'ShearY': shear_level_to_args(MAX_LEVEL, replace_value),
}


class RandomAugment(object):

    def __init__(self, N=2, M=10, isPIL=False, augs=[]):
        self.N = N
        self.M = M
        self.isPIL = isPIL
        if augs:
            self.augs = augs
        else:
            self.augs = list(arg_dict.keys())

    def get_random_ops(self):
        sampled_ops = np.random.choice(self.augs, self.N)
        return [(op, 0.5, self.M) for op in sampled_ops]

    def __call__(self, img):
        if self.isPIL:
            img = np.array(img)
        ops = self.get_random_ops()
        for name, prob, level in ops:
            if np.random.random() > prob:
                continue
            args = arg_dict[name](level)
            img = func_dict[name](img, *args)
        return img


def build_transform(is_train, randaug=True, input_size=224, interpolation='bicubic'):
    if is_train:
        t = [
            RandomResizedCropAndInterpolation(
                input_size, scale=(0.5, 1.0), interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.RandomHorizontalFlip(),
        ]
        if randaug:
            t.append(
                RandomAugment(
                    2, 7, isPIL=True,
                    augs=[
                        'Identity', 'AutoContrast', 'Equalize', 'Brightness', 'Sharpness',
                        'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate',
                    ]))
        t += [
            transforms.ToTensor(),
            transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
        ]
        t = transforms.Compose(t)
    else:
        t = transforms.Compose([
            transforms.Resize((input_size, input_size),
                              interpolation=transforms.InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD)
        ])

    return t


class VisCpmChatBeeImageProcessor(BaseImageProcessor):
    def __init__(self, is_train, randaug=True, input_size=224, interpolation='bicubic', **kwargs):
        super().__init__(**kwargs)
        self.is_train = is_train
        self.randaug = randaug
        self.input_size = input_size
        self.interpolation = interpolation
        self._transform = build_transform(is_train, randaug=randaug, input_size=input_size, interpolation=interpolation)

    def preprocess(self, images, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs) -> BatchFeature:
        images = make_list_of_images(images)
        images = [self._transform(image) for image in images]
        images = torch.tensor([image.numpy() for image in images])

        data = {"pixel_values": images}
        return BatchFeature(data=data, tensor_type=return_tensors)

    def to_json_string(self) -> str:
        """
        Serializes this instance to a JSON string.

        Returns:
            `str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
        """
        dictionary = self.to_dict()

        for key, value in dictionary.items():
            if isinstance(value, np.ndarray):
                dictionary[key] = value.tolist()

        # make sure private name "_processor_class" is correctly
        # saved as "processor_class"
        _processor_class = dictionary.pop("_processor_class", None)
        if _processor_class is not None:
            dictionary["processor_class"] = _processor_class
        _transform = dictionary.pop("_transform", None)
        if _transform is not None:
            dictionary["_transform"] = str(type(_transform))

        return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"