File size: 5,946 Bytes
aa60bbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding=utf-8
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CpmBee model configuration"""

from typing import List, Optional, Tuple, Union

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

CPMBEE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "openbmb/viscpmchat-bee-10b": "https://huggingface.co/openbmb/VisCPM-Chat/resolve/main/config.json",
    # See all VisCpmBee models at https://huggingface.co/models?filter=viscpmbee
}


class VisCpmChatBeeConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`CpmBeeModel`]. It is used to instbeeiate an
    CPMBee model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the CPMBee
    [openbmb/cpm-bee-10b](https://huggingface.co/openbmb/cpm-bee-10b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30720):
            Vocabulary size of the CPMBee model. Defines the number of different tokens that can be represented by the
            `input` passed when calling [`CpmBeeModel`].
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the encoder layers.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads in the Transformer encoder.
        dim_head (`int`, *optional*, defaults to 128):
            Dimension of attention heads for each attention layer in the Transformer encoder.
        dim_ff (`int`, *optional*, defaults to 10240):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 48):
            Number of layers of the Transformer encoder.
        dropout_p (`float`, *optional*, defaults to 0.1):
            The dropout probabilitiy for all fully connected layers in the embeddings, encoder.
        position_bias_num_buckets (`int`, *optional*, defaults to 512):
            The number of position_bias buckets.
        position_bias_num_segment_buckets (`int`, *optional*, defaults to 32):
            The number of segment buckets.
        position_bias_max_distance (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        eps (`float`, *optional*, defaults to 1e-6):
            The epsilon used by the layer normalization layers.
        init_std (`float`, *optional*, defaults to 1.0):
            Initialize parameters with std = init_std.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether to use cache.
        distance_scale (`float` or `int`, *optional*, defaults to 16):
            Scale the rotary embedding.
        mask_modules (`list` or `tuple`, *optional*, defaults to None):
            Decides which feedforward block or attention block is pruned.
        half (`bool`, *optional*, defaults to `False`):
            Decides the model parameters are half-precision or not.

    Example:

    ```python
    >>> from transformers import CpmBeeModel, CpmBeeConfig

    >>> # Initializing a CPMBee cpm-bee-10b style configuration
    >>> configuration = CpmBeeConfig()

    >>> # Initializing a model from the cpm-bee-10b style configuration
    >>> model = CpmBeeModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "viscpmchatbee"

    def __init__(
        self,
        vocab_size: int = 30720,
        hidden_size: int = 4096,
        num_attention_heads: int = 64,
        dim_head: int = 64,
        dim_ff: int = 10240,
        num_hidden_layers: int = 32,
        dropout_p: int = 0.0,
        position_bias_num_buckets: int = 256,
        position_bias_num_segment_buckets: int = 32,
        position_bias_max_distance: int = 2048,
        eps: int = 1e-6,
        init_std: float = 1.0,
        use_cache: bool = True,
        distance_scale: Union[int, float] = 16,
        mask_modules: Optional[Union[List, Tuple]] = None,
        half: bool = False,
        vision_dim: int = 1024,
        query_num: int = 64,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.position_bias_num_segment_buckets = position_bias_num_segment_buckets
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.dim_head = dim_head
        self.dim_ff = dim_ff
        self.num_hidden_layers = num_hidden_layers
        self.position_bias_num_buckets = position_bias_num_buckets
        self.position_bias_max_distance = position_bias_max_distance
        self.dropout_p = dropout_p
        self.eps = eps
        self.use_cache = use_cache
        self.vocab_size = vocab_size
        self.init_std = init_std
        self.distance_scale = distance_scale
        self.half = half
        self.mask_modules = mask_modules
        self.vision_dim = vision_dim
        self.query_num = query_num