--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.654491341991342 --- # Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6305 - Accuracy: 0.6545 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0933 | 1.0 | 923 | 1.1338 | 0.6069 | | 0.9991 | 2.0 | 1846 | 1.0315 | 0.6488 | | 0.8084 | 3.0 | 2769 | 0.9631 | 0.6669 | | 0.4871 | 4.0 | 3692 | 1.0424 | 0.6650 | | 0.3928 | 5.0 | 4615 | 1.1438 | 0.6599 | | 0.2213 | 6.0 | 5538 | 1.2845 | 0.6591 | | 0.1199 | 7.0 | 6461 | 1.3914 | 0.6553 | | 0.1231 | 8.0 | 7384 | 1.5372 | 0.6504 | | 0.1309 | 9.0 | 8307 | 1.6016 | 0.6526 | | 0.074 | 10.0 | 9230 | 1.6305 | 0.6545 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1