Model save
Browse files- README.md +98 -0
- all_results.json +13 -0
- configuration_mixtral_mole.py +176 -0
- eval_results.json +8 -0
- generation_config.json +7 -0
- model.safetensors +1 -1
- modeling_mixtral_mole.py +960 -0
- runs/Jan23_12-59-12_main1/events.out.tfevents.1706014802.main1.65865.0 +2 -2
- runs/Jan23_12-59-12_main1/events.out.tfevents.1706062627.main1.65865.1 +3 -0
- train_results.json +8 -0
- trainer_state.json +4412 -0
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- trl
|
4 |
+
- sft
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- generator
|
8 |
+
model-index:
|
9 |
+
- name: tinyllama_mole_sft_ultrachat_ep3
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# tinyllama_mole_sft_ultrachat_ep3
|
17 |
+
|
18 |
+
This model was trained from scratch on the generator dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.1127
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- distributed_type: multi-GPU
|
44 |
+
- num_devices: 4
|
45 |
+
- gradient_accumulation_steps: 2
|
46 |
+
- total_train_batch_size: 128
|
47 |
+
- total_eval_batch_size: 32
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 120
|
51 |
+
- num_epochs: 3
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
57 |
+
| 1.3007 | 0.09 | 100 | 1.2780 |
|
58 |
+
| 1.2255 | 0.18 | 200 | 1.2158 |
|
59 |
+
| 1.192 | 0.26 | 300 | 1.1921 |
|
60 |
+
| 1.1696 | 0.35 | 400 | 1.1770 |
|
61 |
+
| 1.1426 | 0.44 | 500 | 1.1666 |
|
62 |
+
| 1.1628 | 0.53 | 600 | 1.1583 |
|
63 |
+
| 1.1501 | 0.61 | 700 | 1.1513 |
|
64 |
+
| 1.137 | 0.7 | 800 | 1.1457 |
|
65 |
+
| 1.1321 | 0.79 | 900 | 1.1407 |
|
66 |
+
| 1.1156 | 0.88 | 1000 | 1.1359 |
|
67 |
+
| 1.1395 | 0.96 | 1100 | 1.1318 |
|
68 |
+
| 1.0564 | 1.05 | 1200 | 1.1315 |
|
69 |
+
| 1.0594 | 1.14 | 1300 | 1.1295 |
|
70 |
+
| 1.0711 | 1.23 | 1400 | 1.1274 |
|
71 |
+
| 1.0624 | 1.31 | 1500 | 1.1256 |
|
72 |
+
| 1.0652 | 1.4 | 1600 | 1.1233 |
|
73 |
+
| 1.0626 | 1.49 | 1700 | 1.1213 |
|
74 |
+
| 1.0457 | 1.58 | 1800 | 1.1195 |
|
75 |
+
| 1.0665 | 1.66 | 1900 | 1.1178 |
|
76 |
+
| 1.07 | 1.75 | 2000 | 1.1158 |
|
77 |
+
| 1.0567 | 1.84 | 2100 | 1.1141 |
|
78 |
+
| 1.0304 | 1.93 | 2200 | 1.1127 |
|
79 |
+
| 1.0132 | 2.01 | 2300 | 1.1170 |
|
80 |
+
| 1.0203 | 2.1 | 2400 | 1.1170 |
|
81 |
+
| 1.0088 | 2.19 | 2500 | 1.1168 |
|
82 |
+
| 1.002 | 2.28 | 2600 | 1.1162 |
|
83 |
+
| 1.0004 | 2.37 | 2700 | 1.1157 |
|
84 |
+
| 1.0058 | 2.45 | 2800 | 1.1156 |
|
85 |
+
| 1.0118 | 2.54 | 2900 | 1.1150 |
|
86 |
+
| 0.9941 | 2.63 | 3000 | 1.1148 |
|
87 |
+
| 1.0127 | 2.72 | 3100 | 1.1147 |
|
88 |
+
| 1.0039 | 2.8 | 3200 | 1.1144 |
|
89 |
+
| 1.0 | 2.89 | 3300 | 1.1143 |
|
90 |
+
| 1.0188 | 2.98 | 3400 | 1.1143 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.37.0
|
96 |
+
- Pytorch 2.1.2+cu118
|
97 |
+
- Datasets 2.16.1
|
98 |
+
- Tokenizers 0.15.0
|
all_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_loss": 1.1127439737319946,
|
4 |
+
"eval_runtime": 425.9465,
|
5 |
+
"eval_samples": 23110,
|
6 |
+
"eval_samples_per_second": 37.953,
|
7 |
+
"eval_steps_per_second": 1.188,
|
8 |
+
"train_loss": 1.0902616986746403,
|
9 |
+
"train_runtime": 47329.7113,
|
10 |
+
"train_samples": 207865,
|
11 |
+
"train_samples_per_second": 9.258,
|
12 |
+
"train_steps_per_second": 0.072
|
13 |
+
}
|
configuration_mixtral_mole.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Mixtral model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"mistral-ai/Mixtral-8x7B": "https://huggingface.co/mistral-ai/Mixtral-8x7B/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class MixtralMoleConfig(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`MixtralMoleModel`]. It is used to instantiate an
|
31 |
+
Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
32 |
+
with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.
|
33 |
+
|
34 |
+
[mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
|
35 |
+
[mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`MixtralMoleModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 14336):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
60 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
61 |
+
The non-linear activation function (function or string) in the decoder.
|
62 |
+
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
63 |
+
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
|
64 |
+
allows sequence of up to 4096*32 tokens.
|
65 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
66 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
67 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
68 |
+
The epsilon used by the rms normalization layers.
|
69 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
71 |
+
relevant if `config.is_decoder=True`.
|
72 |
+
pad_token_id (`int`, *optional*):
|
73 |
+
The id of the padding token.
|
74 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
75 |
+
The id of the "beginning-of-sequence" token.
|
76 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
77 |
+
The id of the "end-of-sequence" token.
|
78 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether the model's input and output word embeddings should be tied.
|
80 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
81 |
+
The base period of the RoPE embeddings.
|
82 |
+
sliding_window (`int`, *optional*):
|
83 |
+
Sliding window attention window size. If not specified, will default to `4096`.
|
84 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
85 |
+
The dropout ratio for the attention probabilities.
|
86 |
+
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
87 |
+
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
88 |
+
parameter
|
89 |
+
num_local_experts (`int`, *optional*, defaults to 8):
|
90 |
+
Number of experts per Sparse MLP layer.
|
91 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
92 |
+
Whether or not the router logits should be returned by the model. Enabeling this will also
|
93 |
+
allow the model to output the auxiliary loss. See [here]() for more details
|
94 |
+
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
95 |
+
The aux loss factor for the total loss.
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from models import MixtralMoleModel, MixtralMoleConfig
|
99 |
+
|
100 |
+
>>> # Initializing a Mixtral 7B style configuration
|
101 |
+
>>> configuration = MixtralMoleConfig()
|
102 |
+
|
103 |
+
>>> # Initializing a model from the Mixtral 7B style configuration
|
104 |
+
>>> model = MixtralMoleModel(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
```"""
|
109 |
+
|
110 |
+
model_type = "mixtralmole"
|
111 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_size=32000,
|
116 |
+
hidden_size=4096,
|
117 |
+
intermediate_size=14336,
|
118 |
+
num_hidden_layers=32,
|
119 |
+
num_attention_heads=32,
|
120 |
+
num_key_value_heads=8,
|
121 |
+
hidden_act="silu",
|
122 |
+
max_position_embeddings=4096 * 32,
|
123 |
+
initializer_range=0.02,
|
124 |
+
rms_norm_eps=1e-5,
|
125 |
+
use_cache=True,
|
126 |
+
pad_token_id=None,
|
127 |
+
bos_token_id=1,
|
128 |
+
eos_token_id=2,
|
129 |
+
tie_word_embeddings=False,
|
130 |
+
rope_theta=1e6,
|
131 |
+
sliding_window=None,
|
132 |
+
attention_dropout=0.0,
|
133 |
+
num_experts_per_tok=2,
|
134 |
+
num_local_experts=8,
|
135 |
+
output_router_logits=False,
|
136 |
+
router_aux_loss_coef=0.001,
|
137 |
+
adapter_dim=16,
|
138 |
+
adapter_alpha=1.0,
|
139 |
+
**kwargs,
|
140 |
+
):
|
141 |
+
self.vocab_size = vocab_size
|
142 |
+
self.max_position_embeddings = max_position_embeddings
|
143 |
+
self.hidden_size = hidden_size
|
144 |
+
self.intermediate_size = intermediate_size
|
145 |
+
self.num_hidden_layers = num_hidden_layers
|
146 |
+
self.num_attention_heads = num_attention_heads
|
147 |
+
self.sliding_window = sliding_window
|
148 |
+
|
149 |
+
# for backward compatibility
|
150 |
+
if num_key_value_heads is None:
|
151 |
+
num_key_value_heads = num_attention_heads
|
152 |
+
|
153 |
+
self.num_key_value_heads = num_key_value_heads
|
154 |
+
self.hidden_act = hidden_act
|
155 |
+
self.initializer_range = initializer_range
|
156 |
+
self.rms_norm_eps = rms_norm_eps
|
157 |
+
self.use_cache = use_cache
|
158 |
+
self.rope_theta = rope_theta
|
159 |
+
self.attention_dropout = attention_dropout
|
160 |
+
|
161 |
+
self.num_experts_per_tok = num_experts_per_tok
|
162 |
+
self.num_local_experts = num_local_experts
|
163 |
+
self.output_router_logits = output_router_logits
|
164 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
165 |
+
|
166 |
+
# lora
|
167 |
+
self.adapter_dim = adapter_dim
|
168 |
+
self.adapter_alpha = adapter_alpha
|
169 |
+
|
170 |
+
super().__init__(
|
171 |
+
pad_token_id=pad_token_id,
|
172 |
+
bos_token_id=bos_token_id,
|
173 |
+
eos_token_id=eos_token_id,
|
174 |
+
tie_word_embeddings=tie_word_embeddings,
|
175 |
+
**kwargs,
|
176 |
+
)
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_loss": 1.1127439737319946,
|
4 |
+
"eval_runtime": 425.9465,
|
5 |
+
"eval_samples": 23110,
|
6 |
+
"eval_samples_per_second": 37.953,
|
7 |
+
"eval_steps_per_second": 1.188
|
8 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.37.0",
|
6 |
+
"use_cache": false
|
7 |
+
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2223960880
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9437ee9f304616df308df88427951ab973156df2ce1181c5c57d23dd955911b6
|
3 |
size 2223960880
|
modeling_mixtral_mole.py
ADDED
@@ -0,0 +1,960 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Mixtral Mole model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, DynamicCache
|
34 |
+
from transformers.modeling_attn_mask_utils import (
|
35 |
+
_prepare_4d_causal_attention_mask,
|
36 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
37 |
+
)
|
38 |
+
from transformers.modeling_outputs import (
|
39 |
+
MoeCausalLMOutputWithPast,
|
40 |
+
MoeModelOutputWithPast,
|
41 |
+
SequenceClassifierOutputWithPast,
|
42 |
+
)
|
43 |
+
from transformers.modeling_utils import PreTrainedModel
|
44 |
+
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
|
45 |
+
from transformers.utils import (
|
46 |
+
add_start_docstrings,
|
47 |
+
add_start_docstrings_to_model_forward,
|
48 |
+
is_flash_attn_2_available,
|
49 |
+
is_flash_attn_greater_or_equal_2_10,
|
50 |
+
logging,
|
51 |
+
replace_return_docstrings,
|
52 |
+
)
|
53 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
54 |
+
from .configuration_mixtral_mole import MixtralMoleConfig
|
55 |
+
|
56 |
+
from transformers.models.mixtral.modeling_mixtral import (
|
57 |
+
MixtralRMSNorm,
|
58 |
+
MixtralRotaryEmbedding,
|
59 |
+
MixtralAttention,
|
60 |
+
MixtralFlashAttention2,
|
61 |
+
MixtralSdpaAttention,
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
66 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
67 |
+
if is_torch_fx_available():
|
68 |
+
if not is_torch_greater_or_equal_than_1_13:
|
69 |
+
import torch.fx
|
70 |
+
|
71 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
72 |
+
|
73 |
+
|
74 |
+
logger = logging.get_logger(__name__)
|
75 |
+
|
76 |
+
_CONFIG_FOR_DOC = "MixtralMoleConfig"
|
77 |
+
|
78 |
+
|
79 |
+
def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2) -> float:
|
80 |
+
r"""
|
81 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
82 |
+
|
83 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
84 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
85 |
+
experts is too unbalanced.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
|
89 |
+
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
|
90 |
+
shape [batch_size X sequence_length, num_experts].
|
91 |
+
num_experts (`int`, *optional*):
|
92 |
+
Number of experts
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
The auxiliary loss.
|
96 |
+
"""
|
97 |
+
if gate_logits is None or not isinstance(gate_logits, tuple):
|
98 |
+
return 0
|
99 |
+
|
100 |
+
if isinstance(gate_logits, tuple):
|
101 |
+
compute_device = gate_logits[0].device
|
102 |
+
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
|
103 |
+
|
104 |
+
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
|
105 |
+
|
106 |
+
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
|
107 |
+
|
108 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
|
109 |
+
|
110 |
+
# Compute the percentage of tokens routed to each experts
|
111 |
+
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
|
112 |
+
|
113 |
+
# Compute the average probability of routing to these experts
|
114 |
+
router_prob_per_expert = torch.mean(routing_weights, dim=0)
|
115 |
+
|
116 |
+
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
|
117 |
+
return overall_loss * num_experts
|
118 |
+
|
119 |
+
|
120 |
+
MIXTRAL_ATTENTION_CLASSES = {
|
121 |
+
"eager": MixtralAttention,
|
122 |
+
"flash_attention_2": MixtralFlashAttention2,
|
123 |
+
"sdpa": MixtralSdpaAttention,
|
124 |
+
}
|
125 |
+
|
126 |
+
class LoRALayer(nn.Module):
|
127 |
+
def __init__(self, config):
|
128 |
+
super().__init__()
|
129 |
+
self.config = config
|
130 |
+
self.intermediate_size = config.intermediate_size
|
131 |
+
self.hidden_size = config.hidden_size
|
132 |
+
self.adapter_down = nn.Linear(self.hidden_size, config.adapter_dim, bias=False)
|
133 |
+
self.adapter_up = nn.Linear(config.adapter_dim, self.hidden_size, bias=False)
|
134 |
+
# self.adapter_act = nn.GELU()
|
135 |
+
self.adapter_act = nn.Identity() # Using LoRA not Parallel Adapter
|
136 |
+
|
137 |
+
self.adapter_dropout = nn.Dropout(p=0.01)
|
138 |
+
self.adapter_scaling = config.adapter_alpha / config.adapter_dim
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
x = self.adapter_dropout(x)
|
142 |
+
x = self.adapter_scaling * self.adapter_up(self.adapter_act(self.adapter_down(x)))
|
143 |
+
return x
|
144 |
+
|
145 |
+
|
146 |
+
class MixtralMoleBLockSparseTop2MLP(nn.Module):
|
147 |
+
def __init__(self, config: MixtralMoleConfig):
|
148 |
+
super().__init__()
|
149 |
+
self.ffn_dim = config.intermediate_size
|
150 |
+
self.hidden_dim = config.hidden_size
|
151 |
+
|
152 |
+
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
153 |
+
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
|
154 |
+
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
|
155 |
+
|
156 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
157 |
+
|
158 |
+
def forward(self, hidden_states):
|
159 |
+
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
|
160 |
+
current_hidden_states = self.w2(current_hidden_states)
|
161 |
+
return current_hidden_states
|
162 |
+
|
163 |
+
|
164 |
+
class MixtralMoleSparseMoeBlock(nn.Module):
|
165 |
+
"""
|
166 |
+
This implementation is
|
167 |
+
strictly equivalent to standard MoE with full capacity (no
|
168 |
+
dropped tokens). It's faster since it formulates MoE operations
|
169 |
+
in terms of block-sparse operations to accomodate imbalanced
|
170 |
+
assignments of tokens to experts, whereas standard MoE either
|
171 |
+
(1) drop tokens at the cost of reduced performance or (2) set
|
172 |
+
capacity factor to number of experts and thus waste computation
|
173 |
+
and memory on padding.
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, config):
|
177 |
+
super().__init__()
|
178 |
+
self.hidden_dim = config.hidden_size
|
179 |
+
self.ffn_dim = config.intermediate_size
|
180 |
+
self.num_experts = config.num_local_experts
|
181 |
+
self.top_k = config.num_experts_per_tok
|
182 |
+
|
183 |
+
# gating
|
184 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
185 |
+
|
186 |
+
self.ffn = MixtralMoleBLockSparseTop2MLP(config)
|
187 |
+
|
188 |
+
self.experts = nn.ModuleList([LoRALayer(config) for _ in range(self.num_experts)])
|
189 |
+
|
190 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
191 |
+
""" """
|
192 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
193 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
194 |
+
# router_logits: (batch * sequence_length, n_experts)
|
195 |
+
router_logits = self.gate(hidden_states)
|
196 |
+
|
197 |
+
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
198 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) # (B*N, 2)
|
199 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
200 |
+
# we cast back to the input dtype
|
201 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
202 |
+
|
203 |
+
# hidden_states fed into FFN
|
204 |
+
hidden_states_ffn = self.ffn(hidden_states) # (B*N, dim)
|
205 |
+
|
206 |
+
final_hidden_states = torch.zeros(
|
207 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
208 |
+
)
|
209 |
+
|
210 |
+
# One hot encode the selected experts to create an expert mask
|
211 |
+
# this will be used to easily index which expert is going to be sollicitated
|
212 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # (8, 2, B*N)
|
213 |
+
|
214 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
215 |
+
for expert_idx in range(self.num_experts):
|
216 |
+
expert_layer = self.experts[expert_idx]
|
217 |
+
idx, top_x = torch.where(expert_mask[expert_idx]) # idx: token choose this expert as top-1 or top-2; top_x: whether token choose this expert
|
218 |
+
|
219 |
+
if top_x.shape[0] == 0:
|
220 |
+
continue
|
221 |
+
|
222 |
+
# in torch it is faster to index using lists than torch tensors
|
223 |
+
top_x_list = top_x.tolist()
|
224 |
+
idx_list = idx.tolist()
|
225 |
+
|
226 |
+
# Index the correct hidden states and compute the expert hidden state for
|
227 |
+
# the current expert. We need to make sure to multiply the output hidden
|
228 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
229 |
+
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
230 |
+
current_ffn = hidden_states_ffn[None, top_x_list].reshape(-1, hidden_dim)
|
231 |
+
|
232 |
+
# fuse ffn and lora hidden states
|
233 |
+
# shall we fuse lora experts before this addition or after?
|
234 |
+
# current implementation is aligned with mixsture of FFN experts
|
235 |
+
current_hidden_states = (expert_layer(current_state) + current_ffn) * routing_weights[top_x_list, idx_list, None]
|
236 |
+
|
237 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
238 |
+
# the `top_x` tensor here.
|
239 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
240 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
241 |
+
return final_hidden_states, router_logits
|
242 |
+
|
243 |
+
|
244 |
+
class MixtralMoleDecoderLayer(nn.Module):
|
245 |
+
def __init__(self, config: MixtralMoleConfig, layer_idx: int):
|
246 |
+
super().__init__()
|
247 |
+
self.hidden_size = config.hidden_size
|
248 |
+
|
249 |
+
self.self_attn = MIXTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
250 |
+
|
251 |
+
self.block_sparse_moe = MixtralMoleSparseMoeBlock(config)
|
252 |
+
self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
253 |
+
self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
254 |
+
|
255 |
+
def forward(
|
256 |
+
self,
|
257 |
+
hidden_states: torch.Tensor,
|
258 |
+
attention_mask: Optional[torch.Tensor] = None,
|
259 |
+
position_ids: Optional[torch.LongTensor] = None,
|
260 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
261 |
+
output_attentions: Optional[bool] = False,
|
262 |
+
output_router_logits: Optional[bool] = False,
|
263 |
+
use_cache: Optional[bool] = False,
|
264 |
+
**kwargs,
|
265 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
266 |
+
if "padding_mask" in kwargs:
|
267 |
+
warnings.warn(
|
268 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
269 |
+
)
|
270 |
+
"""
|
271 |
+
Args:
|
272 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
273 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
274 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
275 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
276 |
+
output_attentions (`bool`, *optional*):
|
277 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
278 |
+
returned tensors for more detail.
|
279 |
+
output_router_logits (`bool`, *optional*):
|
280 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
281 |
+
should not be returned during inference.
|
282 |
+
use_cache (`bool`, *optional*):
|
283 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
284 |
+
(see `past_key_values`).
|
285 |
+
"""
|
286 |
+
|
287 |
+
residual = hidden_states
|
288 |
+
|
289 |
+
hidden_states = self.input_layernorm(hidden_states)
|
290 |
+
|
291 |
+
# Self Attention
|
292 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
293 |
+
hidden_states=hidden_states,
|
294 |
+
attention_mask=attention_mask,
|
295 |
+
position_ids=position_ids,
|
296 |
+
past_key_value=past_key_value,
|
297 |
+
output_attentions=output_attentions,
|
298 |
+
use_cache=use_cache,
|
299 |
+
)
|
300 |
+
hidden_states = residual + hidden_states
|
301 |
+
|
302 |
+
# Fully Connected
|
303 |
+
residual = hidden_states
|
304 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
305 |
+
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
|
306 |
+
hidden_states = residual + hidden_states
|
307 |
+
|
308 |
+
outputs = (hidden_states,)
|
309 |
+
|
310 |
+
if output_attentions:
|
311 |
+
outputs += (self_attn_weights,)
|
312 |
+
|
313 |
+
if use_cache:
|
314 |
+
outputs += (present_key_value,)
|
315 |
+
|
316 |
+
if output_router_logits:
|
317 |
+
outputs += (router_logits,)
|
318 |
+
|
319 |
+
return outputs
|
320 |
+
|
321 |
+
|
322 |
+
MIXTRAL_START_DOCSTRING = r"""
|
323 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
324 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
325 |
+
etc.)
|
326 |
+
|
327 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
328 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
329 |
+
and behavior.
|
330 |
+
|
331 |
+
Parameters:
|
332 |
+
config ([`MixtralMoleConfig`]):
|
333 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
334 |
+
load the weights associated with the model, only the configuration. Check out the
|
335 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
336 |
+
"""
|
337 |
+
|
338 |
+
|
339 |
+
@add_start_docstrings(
|
340 |
+
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
341 |
+
MIXTRAL_START_DOCSTRING,
|
342 |
+
)
|
343 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Mixtral
|
344 |
+
class MixtralMolePreTrainedModel(PreTrainedModel):
|
345 |
+
config_class = MixtralMoleConfig
|
346 |
+
base_model_prefix = "model"
|
347 |
+
supports_gradient_checkpointing = True
|
348 |
+
_no_split_modules = ["MixtralMoleDecoderLayer"]
|
349 |
+
_skip_keys_device_placement = "past_key_values"
|
350 |
+
_supports_flash_attn_2 = True
|
351 |
+
_supports_sdpa = True
|
352 |
+
_supports_cache_class = True
|
353 |
+
|
354 |
+
def _init_weights(self, module):
|
355 |
+
std = self.config.initializer_range
|
356 |
+
if isinstance(module, nn.Linear):
|
357 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
358 |
+
if module.bias is not None:
|
359 |
+
module.bias.data.zero_()
|
360 |
+
elif isinstance(module, nn.Embedding):
|
361 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
362 |
+
if module.padding_idx is not None:
|
363 |
+
module.weight.data[module.padding_idx].zero_()
|
364 |
+
|
365 |
+
|
366 |
+
MIXTRAL_INPUTS_DOCSTRING = r"""
|
367 |
+
Args:
|
368 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
369 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
370 |
+
it.
|
371 |
+
|
372 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
373 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
374 |
+
|
375 |
+
[What are input IDs?](../glossary#input-ids)
|
376 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
377 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
378 |
+
|
379 |
+
- 1 for tokens that are **not masked**,
|
380 |
+
- 0 for tokens that are **masked**.
|
381 |
+
|
382 |
+
[What are attention masks?](../glossary#attention-mask)
|
383 |
+
|
384 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
385 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
386 |
+
|
387 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
388 |
+
`past_key_values`).
|
389 |
+
|
390 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
391 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
392 |
+
information on the default strategy.
|
393 |
+
|
394 |
+
- 1 indicates the head is **not masked**,
|
395 |
+
- 0 indicates the head is **masked**.
|
396 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
397 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
398 |
+
config.n_positions - 1]`.
|
399 |
+
|
400 |
+
[What are position IDs?](../glossary#position-ids)
|
401 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
402 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
403 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
404 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
405 |
+
|
406 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
407 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
408 |
+
|
409 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
410 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
411 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
412 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
413 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
414 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
415 |
+
model's internal embedding lookup matrix.
|
416 |
+
use_cache (`bool`, *optional*):
|
417 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
418 |
+
`past_key_values`).
|
419 |
+
output_attentions (`bool`, *optional*):
|
420 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
421 |
+
tensors for more detail.
|
422 |
+
output_hidden_states (`bool`, *optional*):
|
423 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
424 |
+
more detail.
|
425 |
+
output_router_logits (`bool`, *optional*):
|
426 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
427 |
+
should not be returned during inference.
|
428 |
+
return_dict (`bool`, *optional*):
|
429 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
430 |
+
"""
|
431 |
+
|
432 |
+
|
433 |
+
@add_start_docstrings(
|
434 |
+
"The bare Mixtral Model outputting raw hidden-states without any specific head on top.",
|
435 |
+
MIXTRAL_START_DOCSTRING,
|
436 |
+
)
|
437 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral
|
438 |
+
class MixtralMoleModel(MixtralMolePreTrainedModel):
|
439 |
+
"""
|
440 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralMoleDecoderLayer`]
|
441 |
+
|
442 |
+
Args:
|
443 |
+
config: MixtralMoleConfig
|
444 |
+
"""
|
445 |
+
|
446 |
+
def __init__(self, config: MixtralMoleConfig):
|
447 |
+
super().__init__(config)
|
448 |
+
self.padding_idx = config.pad_token_id
|
449 |
+
self.vocab_size = config.vocab_size
|
450 |
+
|
451 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
452 |
+
self.layers = nn.ModuleList(
|
453 |
+
[MixtralMoleDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
454 |
+
)
|
455 |
+
self._attn_implementation = config._attn_implementation
|
456 |
+
self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
457 |
+
|
458 |
+
self.gradient_checkpointing = False
|
459 |
+
# Initialize weights and apply final processing
|
460 |
+
self.post_init()
|
461 |
+
|
462 |
+
def get_input_embeddings(self):
|
463 |
+
return self.embed_tokens
|
464 |
+
|
465 |
+
def set_input_embeddings(self, value):
|
466 |
+
self.embed_tokens = value
|
467 |
+
|
468 |
+
# Ignore copy
|
469 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
470 |
+
def forward(
|
471 |
+
self,
|
472 |
+
input_ids: torch.LongTensor = None,
|
473 |
+
attention_mask: Optional[torch.Tensor] = None,
|
474 |
+
position_ids: Optional[torch.LongTensor] = None,
|
475 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
476 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
477 |
+
use_cache: Optional[bool] = None,
|
478 |
+
output_attentions: Optional[bool] = None,
|
479 |
+
output_hidden_states: Optional[bool] = None,
|
480 |
+
output_router_logits: Optional[bool] = None,
|
481 |
+
return_dict: Optional[bool] = None,
|
482 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
483 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
484 |
+
output_router_logits = (
|
485 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
486 |
+
)
|
487 |
+
output_hidden_states = (
|
488 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
489 |
+
)
|
490 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
491 |
+
|
492 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
493 |
+
|
494 |
+
# retrieve input_ids and inputs_embeds
|
495 |
+
if input_ids is not None and inputs_embeds is not None:
|
496 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
497 |
+
elif input_ids is not None:
|
498 |
+
batch_size, seq_length = input_ids.shape
|
499 |
+
elif inputs_embeds is not None:
|
500 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
501 |
+
else:
|
502 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
503 |
+
|
504 |
+
past_key_values_length = 0
|
505 |
+
|
506 |
+
if self.gradient_checkpointing and self.training:
|
507 |
+
if use_cache:
|
508 |
+
logger.warning_once(
|
509 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
510 |
+
)
|
511 |
+
use_cache = False
|
512 |
+
|
513 |
+
if use_cache:
|
514 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
515 |
+
if use_legacy_cache:
|
516 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
517 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
518 |
+
|
519 |
+
if position_ids is None:
|
520 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
521 |
+
position_ids = torch.arange(
|
522 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
523 |
+
)
|
524 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
525 |
+
else:
|
526 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
527 |
+
|
528 |
+
if inputs_embeds is None:
|
529 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
530 |
+
|
531 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
532 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
533 |
+
if is_padding_right:
|
534 |
+
raise ValueError(
|
535 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
536 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
|
537 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
538 |
+
)
|
539 |
+
|
540 |
+
if self._attn_implementation == "flash_attention_2":
|
541 |
+
# 2d mask is passed through the layers
|
542 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
543 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
544 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
545 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
546 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
547 |
+
attention_mask,
|
548 |
+
(batch_size, seq_length),
|
549 |
+
inputs_embeds,
|
550 |
+
past_key_values_length,
|
551 |
+
)
|
552 |
+
else:
|
553 |
+
# 4d mask is passed through the layers
|
554 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
555 |
+
attention_mask,
|
556 |
+
(batch_size, seq_length),
|
557 |
+
inputs_embeds,
|
558 |
+
past_key_values_length,
|
559 |
+
sliding_window=self.config.sliding_window,
|
560 |
+
)
|
561 |
+
|
562 |
+
hidden_states = inputs_embeds
|
563 |
+
|
564 |
+
# decoder layers
|
565 |
+
all_hidden_states = () if output_hidden_states else None
|
566 |
+
all_self_attns = () if output_attentions else None
|
567 |
+
all_router_logits = () if output_router_logits else None
|
568 |
+
next_decoder_cache = None
|
569 |
+
|
570 |
+
for decoder_layer in self.layers:
|
571 |
+
if output_hidden_states:
|
572 |
+
all_hidden_states += (hidden_states,)
|
573 |
+
|
574 |
+
if self.gradient_checkpointing and self.training:
|
575 |
+
layer_outputs = self._gradient_checkpointing_func(
|
576 |
+
decoder_layer.__call__,
|
577 |
+
hidden_states,
|
578 |
+
attention_mask,
|
579 |
+
position_ids,
|
580 |
+
past_key_values,
|
581 |
+
output_attentions,
|
582 |
+
output_router_logits,
|
583 |
+
use_cache,
|
584 |
+
)
|
585 |
+
else:
|
586 |
+
layer_outputs = decoder_layer(
|
587 |
+
hidden_states,
|
588 |
+
attention_mask=attention_mask,
|
589 |
+
position_ids=position_ids,
|
590 |
+
past_key_value=past_key_values,
|
591 |
+
output_attentions=output_attentions,
|
592 |
+
output_router_logits=output_router_logits,
|
593 |
+
use_cache=use_cache,
|
594 |
+
)
|
595 |
+
|
596 |
+
hidden_states = layer_outputs[0]
|
597 |
+
|
598 |
+
if use_cache:
|
599 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
600 |
+
|
601 |
+
if output_attentions:
|
602 |
+
all_self_attns += (layer_outputs[1],)
|
603 |
+
|
604 |
+
if output_router_logits:
|
605 |
+
all_router_logits += (layer_outputs[-1],)
|
606 |
+
|
607 |
+
hidden_states = self.norm(hidden_states)
|
608 |
+
|
609 |
+
# add hidden states from the last decoder layer
|
610 |
+
if output_hidden_states:
|
611 |
+
all_hidden_states += (hidden_states,)
|
612 |
+
|
613 |
+
next_cache = None
|
614 |
+
if use_cache:
|
615 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
616 |
+
|
617 |
+
if not return_dict:
|
618 |
+
return tuple(
|
619 |
+
v
|
620 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
621 |
+
if v is not None
|
622 |
+
)
|
623 |
+
return MoeModelOutputWithPast(
|
624 |
+
last_hidden_state=hidden_states,
|
625 |
+
past_key_values=next_cache,
|
626 |
+
hidden_states=all_hidden_states,
|
627 |
+
attentions=all_self_attns,
|
628 |
+
router_logits=all_router_logits,
|
629 |
+
)
|
630 |
+
|
631 |
+
|
632 |
+
class MixtralMoleForCausalLM(MixtralMolePreTrainedModel):
|
633 |
+
_tied_weights_keys = ["lm_head.weight"]
|
634 |
+
|
635 |
+
def __init__(self, config):
|
636 |
+
super().__init__(config)
|
637 |
+
self.model = MixtralMoleModel(config)
|
638 |
+
self.vocab_size = config.vocab_size
|
639 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
640 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
641 |
+
self.num_experts = config.num_local_experts
|
642 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
643 |
+
# Initialize weights and apply final processing
|
644 |
+
self.post_init()
|
645 |
+
|
646 |
+
def get_input_embeddings(self):
|
647 |
+
return self.model.embed_tokens
|
648 |
+
|
649 |
+
def set_input_embeddings(self, value):
|
650 |
+
self.model.embed_tokens = value
|
651 |
+
|
652 |
+
def get_output_embeddings(self):
|
653 |
+
return self.lm_head
|
654 |
+
|
655 |
+
def set_output_embeddings(self, new_embeddings):
|
656 |
+
self.lm_head = new_embeddings
|
657 |
+
|
658 |
+
def set_decoder(self, decoder):
|
659 |
+
self.model = decoder
|
660 |
+
|
661 |
+
def get_decoder(self):
|
662 |
+
return self.model
|
663 |
+
|
664 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
665 |
+
@replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
666 |
+
# Ignore copy
|
667 |
+
def forward(
|
668 |
+
self,
|
669 |
+
input_ids: torch.LongTensor = None,
|
670 |
+
attention_mask: Optional[torch.Tensor] = None,
|
671 |
+
position_ids: Optional[torch.LongTensor] = None,
|
672 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
673 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
674 |
+
labels: Optional[torch.LongTensor] = None,
|
675 |
+
use_cache: Optional[bool] = None,
|
676 |
+
output_attentions: Optional[bool] = None,
|
677 |
+
output_hidden_states: Optional[bool] = None,
|
678 |
+
output_router_logits: Optional[bool] = None,
|
679 |
+
return_dict: Optional[bool] = None,
|
680 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
681 |
+
r"""
|
682 |
+
Args:
|
683 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
684 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
685 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
686 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
687 |
+
|
688 |
+
Returns:
|
689 |
+
|
690 |
+
Example:
|
691 |
+
|
692 |
+
```python
|
693 |
+
>>> from transformers import AutoTokenizer, MixtralMoleForCausalLM
|
694 |
+
|
695 |
+
>>> model = MixtralMoleForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
696 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
|
697 |
+
|
698 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
699 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
700 |
+
|
701 |
+
>>> # Generate
|
702 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
703 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
704 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
705 |
+
```"""
|
706 |
+
|
707 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
708 |
+
output_router_logits = (
|
709 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
710 |
+
)
|
711 |
+
|
712 |
+
output_hidden_states = (
|
713 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
714 |
+
)
|
715 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
716 |
+
|
717 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
718 |
+
outputs = self.model(
|
719 |
+
input_ids=input_ids,
|
720 |
+
attention_mask=attention_mask,
|
721 |
+
position_ids=position_ids,
|
722 |
+
past_key_values=past_key_values,
|
723 |
+
inputs_embeds=inputs_embeds,
|
724 |
+
use_cache=use_cache,
|
725 |
+
output_attentions=output_attentions,
|
726 |
+
output_hidden_states=output_hidden_states,
|
727 |
+
output_router_logits=output_router_logits,
|
728 |
+
return_dict=return_dict,
|
729 |
+
)
|
730 |
+
|
731 |
+
hidden_states = outputs[0]
|
732 |
+
logits = self.lm_head(hidden_states)
|
733 |
+
logits = logits.float()
|
734 |
+
|
735 |
+
loss = None
|
736 |
+
if labels is not None:
|
737 |
+
# Shift so that tokens < n predict n
|
738 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
739 |
+
shift_labels = labels[..., 1:].contiguous()
|
740 |
+
# Flatten the tokens
|
741 |
+
loss_fct = CrossEntropyLoss()
|
742 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
743 |
+
shift_labels = shift_labels.view(-1)
|
744 |
+
# Enable model parallelism
|
745 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
746 |
+
loss = loss_fct(shift_logits, shift_labels)
|
747 |
+
|
748 |
+
aux_loss = None
|
749 |
+
if output_router_logits:
|
750 |
+
aux_loss = load_balancing_loss_func(
|
751 |
+
outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok
|
752 |
+
)
|
753 |
+
if labels is not None:
|
754 |
+
loss += self.router_aux_loss_coef * aux_loss
|
755 |
+
|
756 |
+
if not return_dict:
|
757 |
+
output = (logits,) + outputs[1:]
|
758 |
+
if output_router_logits:
|
759 |
+
output = (aux_loss,) + output
|
760 |
+
return (loss,) + output if loss is not None else output
|
761 |
+
|
762 |
+
return MoeCausalLMOutputWithPast(
|
763 |
+
loss=loss,
|
764 |
+
aux_loss=aux_loss,
|
765 |
+
logits=logits,
|
766 |
+
past_key_values=outputs.past_key_values,
|
767 |
+
hidden_states=outputs.hidden_states,
|
768 |
+
attentions=outputs.attentions,
|
769 |
+
router_logits=outputs.router_logits,
|
770 |
+
)
|
771 |
+
|
772 |
+
def prepare_inputs_for_generation(
|
773 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
774 |
+
):
|
775 |
+
# Omit tokens covered by past_key_values
|
776 |
+
if past_key_values is not None:
|
777 |
+
if isinstance(past_key_values, Cache):
|
778 |
+
cache_length = past_key_values.get_seq_length()
|
779 |
+
past_length = past_key_values.seen_tokens
|
780 |
+
max_cache_length = past_key_values.get_max_length()
|
781 |
+
else:
|
782 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
783 |
+
max_cache_length = None
|
784 |
+
|
785 |
+
# Keep only the unprocessed tokens:
|
786 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
787 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
788 |
+
# input)
|
789 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
790 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
791 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
792 |
+
# input_ids based on the past_length.
|
793 |
+
elif past_length < input_ids.shape[1]:
|
794 |
+
input_ids = input_ids[:, past_length:]
|
795 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
796 |
+
|
797 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
798 |
+
if (
|
799 |
+
max_cache_length is not None
|
800 |
+
and attention_mask is not None
|
801 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
802 |
+
):
|
803 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
804 |
+
|
805 |
+
position_ids = kwargs.get("position_ids", None)
|
806 |
+
if attention_mask is not None and position_ids is None:
|
807 |
+
# create position_ids on the fly for batch generation
|
808 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
809 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
810 |
+
if past_key_values:
|
811 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
812 |
+
|
813 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
814 |
+
if inputs_embeds is not None and past_key_values is None:
|
815 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
816 |
+
else:
|
817 |
+
model_inputs = {"input_ids": input_ids}
|
818 |
+
|
819 |
+
model_inputs.update(
|
820 |
+
{
|
821 |
+
"position_ids": position_ids,
|
822 |
+
"past_key_values": past_key_values,
|
823 |
+
"use_cache": kwargs.get("use_cache"),
|
824 |
+
"attention_mask": attention_mask,
|
825 |
+
}
|
826 |
+
)
|
827 |
+
return model_inputs
|
828 |
+
|
829 |
+
@staticmethod
|
830 |
+
def _reorder_cache(past_key_values, beam_idx):
|
831 |
+
reordered_past = ()
|
832 |
+
for layer_past in past_key_values:
|
833 |
+
reordered_past += (
|
834 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
835 |
+
)
|
836 |
+
return reordered_past
|
837 |
+
|
838 |
+
|
839 |
+
@add_start_docstrings(
|
840 |
+
"""
|
841 |
+
The Mixtral Model transformer with a sequence classification head on top (linear layer).
|
842 |
+
|
843 |
+
[`MixtralMoleForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
844 |
+
(e.g. GPT-2) do.
|
845 |
+
|
846 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
847 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
848 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
849 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
850 |
+
each row of the batch).
|
851 |
+
""",
|
852 |
+
MIXTRAL_START_DOCSTRING,
|
853 |
+
)
|
854 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mixtral, LLAMA->MIXTRAL
|
855 |
+
class MixtralMoleForSequenceClassification(MixtralMolePreTrainedModel):
|
856 |
+
def __init__(self, config):
|
857 |
+
super().__init__(config)
|
858 |
+
self.num_labels = config.num_labels
|
859 |
+
self.model = MixtralMoleModel(config)
|
860 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
861 |
+
|
862 |
+
# Initialize weights and apply final processing
|
863 |
+
self.post_init()
|
864 |
+
|
865 |
+
def get_input_embeddings(self):
|
866 |
+
return self.model.embed_tokens
|
867 |
+
|
868 |
+
def set_input_embeddings(self, value):
|
869 |
+
self.model.embed_tokens = value
|
870 |
+
|
871 |
+
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
|
872 |
+
def forward(
|
873 |
+
self,
|
874 |
+
input_ids: torch.LongTensor = None,
|
875 |
+
attention_mask: Optional[torch.Tensor] = None,
|
876 |
+
position_ids: Optional[torch.LongTensor] = None,
|
877 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
878 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
879 |
+
labels: Optional[torch.LongTensor] = None,
|
880 |
+
use_cache: Optional[bool] = None,
|
881 |
+
output_attentions: Optional[bool] = None,
|
882 |
+
output_hidden_states: Optional[bool] = None,
|
883 |
+
return_dict: Optional[bool] = None,
|
884 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
885 |
+
r"""
|
886 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
887 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
888 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
889 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
890 |
+
"""
|
891 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
892 |
+
|
893 |
+
transformer_outputs = self.model(
|
894 |
+
input_ids,
|
895 |
+
attention_mask=attention_mask,
|
896 |
+
position_ids=position_ids,
|
897 |
+
past_key_values=past_key_values,
|
898 |
+
inputs_embeds=inputs_embeds,
|
899 |
+
use_cache=use_cache,
|
900 |
+
output_attentions=output_attentions,
|
901 |
+
output_hidden_states=output_hidden_states,
|
902 |
+
return_dict=return_dict,
|
903 |
+
)
|
904 |
+
hidden_states = transformer_outputs[0]
|
905 |
+
logits = self.score(hidden_states)
|
906 |
+
|
907 |
+
if input_ids is not None:
|
908 |
+
batch_size = input_ids.shape[0]
|
909 |
+
else:
|
910 |
+
batch_size = inputs_embeds.shape[0]
|
911 |
+
|
912 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
913 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
914 |
+
if self.config.pad_token_id is None:
|
915 |
+
sequence_lengths = -1
|
916 |
+
else:
|
917 |
+
if input_ids is not None:
|
918 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
919 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
920 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
921 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
922 |
+
else:
|
923 |
+
sequence_lengths = -1
|
924 |
+
|
925 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
926 |
+
|
927 |
+
loss = None
|
928 |
+
if labels is not None:
|
929 |
+
labels = labels.to(logits.device)
|
930 |
+
if self.config.problem_type is None:
|
931 |
+
if self.num_labels == 1:
|
932 |
+
self.config.problem_type = "regression"
|
933 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
934 |
+
self.config.problem_type = "single_label_classification"
|
935 |
+
else:
|
936 |
+
self.config.problem_type = "multi_label_classification"
|
937 |
+
|
938 |
+
if self.config.problem_type == "regression":
|
939 |
+
loss_fct = MSELoss()
|
940 |
+
if self.num_labels == 1:
|
941 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
942 |
+
else:
|
943 |
+
loss = loss_fct(pooled_logits, labels)
|
944 |
+
elif self.config.problem_type == "single_label_classification":
|
945 |
+
loss_fct = CrossEntropyLoss()
|
946 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
947 |
+
elif self.config.problem_type == "multi_label_classification":
|
948 |
+
loss_fct = BCEWithLogitsLoss()
|
949 |
+
loss = loss_fct(pooled_logits, labels)
|
950 |
+
if not return_dict:
|
951 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
952 |
+
return ((loss,) + output) if loss is not None else output
|
953 |
+
|
954 |
+
return SequenceClassifierOutputWithPast(
|
955 |
+
loss=loss,
|
956 |
+
logits=pooled_logits,
|
957 |
+
past_key_values=transformer_outputs.past_key_values,
|
958 |
+
hidden_states=transformer_outputs.hidden_states,
|
959 |
+
attentions=transformer_outputs.attentions,
|
960 |
+
)
|
runs/Jan23_12-59-12_main1/events.out.tfevents.1706014802.main1.65865.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ca8ba4c05907405476633105cb3e4e5fb8372f701e78ea49be4a9cfc02d89ca
|
3 |
+
size 122066
|
runs/Jan23_12-59-12_main1/events.out.tfevents.1706062627.main1.65865.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1996dbc3bce71ab41af4ab108d30754d4b3fde333db8b99d734589d64aaf48de
|
3 |
+
size 359
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 1.0902616986746403,
|
4 |
+
"train_runtime": 47329.7113,
|
5 |
+
"train_samples": 207865,
|
6 |
+
"train_samples_per_second": 9.258,
|
7 |
+
"train_steps_per_second": 0.072
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,4412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.1127439737319946,
|
3 |
+
"best_model_checkpoint": "data/tinyllama_mole_sft_ultrachat_ep3/checkpoint-2200",
|
4 |
+
"epoch": 2.9986859395532193,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 3423,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 1.6666666666666668e-07,
|
14 |
+
"loss": 2.7824,
|
15 |
+
"step": 1
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.0,
|
19 |
+
"learning_rate": 8.333333333333333e-07,
|
20 |
+
"loss": 2.7372,
|
21 |
+
"step": 5
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 1.6666666666666667e-06,
|
26 |
+
"loss": 2.7223,
|
27 |
+
"step": 10
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 2.5e-06,
|
32 |
+
"loss": 2.5564,
|
33 |
+
"step": 15
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.02,
|
37 |
+
"learning_rate": 3.3333333333333333e-06,
|
38 |
+
"loss": 2.2279,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.02,
|
43 |
+
"learning_rate": 4.166666666666667e-06,
|
44 |
+
"loss": 1.8858,
|
45 |
+
"step": 25
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.03,
|
49 |
+
"learning_rate": 5e-06,
|
50 |
+
"loss": 1.7341,
|
51 |
+
"step": 30
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.03,
|
55 |
+
"learning_rate": 5.833333333333334e-06,
|
56 |
+
"loss": 1.629,
|
57 |
+
"step": 35
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.04,
|
61 |
+
"learning_rate": 6.666666666666667e-06,
|
62 |
+
"loss": 1.5663,
|
63 |
+
"step": 40
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.04,
|
67 |
+
"learning_rate": 7.500000000000001e-06,
|
68 |
+
"loss": 1.5049,
|
69 |
+
"step": 45
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.04,
|
73 |
+
"learning_rate": 8.333333333333334e-06,
|
74 |
+
"loss": 1.4663,
|
75 |
+
"step": 50
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.05,
|
79 |
+
"learning_rate": 9.166666666666666e-06,
|
80 |
+
"loss": 1.4061,
|
81 |
+
"step": 55
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.05,
|
85 |
+
"learning_rate": 1e-05,
|
86 |
+
"loss": 1.3948,
|
87 |
+
"step": 60
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.06,
|
91 |
+
"learning_rate": 1.0833333333333334e-05,
|
92 |
+
"loss": 1.3597,
|
93 |
+
"step": 65
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.06,
|
97 |
+
"learning_rate": 1.1666666666666668e-05,
|
98 |
+
"loss": 1.3542,
|
99 |
+
"step": 70
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.07,
|
103 |
+
"learning_rate": 1.25e-05,
|
104 |
+
"loss": 1.3161,
|
105 |
+
"step": 75
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.07,
|
109 |
+
"learning_rate": 1.3333333333333333e-05,
|
110 |
+
"loss": 1.3134,
|
111 |
+
"step": 80
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.07,
|
115 |
+
"learning_rate": 1.416666666666667e-05,
|
116 |
+
"loss": 1.3123,
|
117 |
+
"step": 85
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.08,
|
121 |
+
"learning_rate": 1.5000000000000002e-05,
|
122 |
+
"loss": 1.3025,
|
123 |
+
"step": 90
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.08,
|
127 |
+
"learning_rate": 1.5833333333333333e-05,
|
128 |
+
"loss": 1.2728,
|
129 |
+
"step": 95
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.09,
|
133 |
+
"learning_rate": 1.6666666666666667e-05,
|
134 |
+
"loss": 1.3007,
|
135 |
+
"step": 100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.09,
|
139 |
+
"eval_loss": 1.2780451774597168,
|
140 |
+
"eval_runtime": 443.4938,
|
141 |
+
"eval_samples_per_second": 36.451,
|
142 |
+
"eval_steps_per_second": 1.141,
|
143 |
+
"step": 100
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.09,
|
147 |
+
"learning_rate": 1.7500000000000002e-05,
|
148 |
+
"loss": 1.2749,
|
149 |
+
"step": 105
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.1,
|
153 |
+
"learning_rate": 1.8333333333333333e-05,
|
154 |
+
"loss": 1.2661,
|
155 |
+
"step": 110
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 0.1,
|
159 |
+
"learning_rate": 1.916666666666667e-05,
|
160 |
+
"loss": 1.2678,
|
161 |
+
"step": 115
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 0.11,
|
165 |
+
"learning_rate": 2e-05,
|
166 |
+
"loss": 1.2441,
|
167 |
+
"step": 120
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 0.11,
|
171 |
+
"learning_rate": 1.9999886918439637e-05,
|
172 |
+
"loss": 1.249,
|
173 |
+
"step": 125
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.11,
|
177 |
+
"learning_rate": 1.9999547676316034e-05,
|
178 |
+
"loss": 1.2267,
|
179 |
+
"step": 130
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.12,
|
183 |
+
"learning_rate": 1.99989822813016e-05,
|
184 |
+
"loss": 1.2418,
|
185 |
+
"step": 135
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.12,
|
189 |
+
"learning_rate": 1.999819074618348e-05,
|
190 |
+
"loss": 1.2541,
|
191 |
+
"step": 140
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.13,
|
195 |
+
"learning_rate": 1.9997173088863285e-05,
|
196 |
+
"loss": 1.2339,
|
197 |
+
"step": 145
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 0.13,
|
201 |
+
"learning_rate": 1.9995929332356666e-05,
|
202 |
+
"loss": 1.2366,
|
203 |
+
"step": 150
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 0.14,
|
207 |
+
"learning_rate": 1.999445950479281e-05,
|
208 |
+
"loss": 1.2296,
|
209 |
+
"step": 155
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.14,
|
213 |
+
"learning_rate": 1.9992763639413796e-05,
|
214 |
+
"loss": 1.2246,
|
215 |
+
"step": 160
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.14,
|
219 |
+
"learning_rate": 1.9990841774573843e-05,
|
220 |
+
"loss": 1.22,
|
221 |
+
"step": 165
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.15,
|
225 |
+
"learning_rate": 1.9988693953738446e-05,
|
226 |
+
"loss": 1.2232,
|
227 |
+
"step": 170
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.15,
|
231 |
+
"learning_rate": 1.9986320225483396e-05,
|
232 |
+
"loss": 1.2337,
|
233 |
+
"step": 175
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.16,
|
237 |
+
"learning_rate": 1.9983720643493665e-05,
|
238 |
+
"loss": 1.2096,
|
239 |
+
"step": 180
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.16,
|
243 |
+
"learning_rate": 1.9980895266562217e-05,
|
244 |
+
"loss": 1.2099,
|
245 |
+
"step": 185
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 0.17,
|
249 |
+
"learning_rate": 1.9977844158588655e-05,
|
250 |
+
"loss": 1.2165,
|
251 |
+
"step": 190
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.17,
|
255 |
+
"learning_rate": 1.997456738857779e-05,
|
256 |
+
"loss": 1.2075,
|
257 |
+
"step": 195
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.18,
|
261 |
+
"learning_rate": 1.9971065030638076e-05,
|
262 |
+
"loss": 1.2255,
|
263 |
+
"step": 200
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.18,
|
267 |
+
"eval_loss": 1.215826153755188,
|
268 |
+
"eval_runtime": 441.9342,
|
269 |
+
"eval_samples_per_second": 36.58,
|
270 |
+
"eval_steps_per_second": 1.145,
|
271 |
+
"step": 200
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.18,
|
275 |
+
"learning_rate": 1.996733716397993e-05,
|
276 |
+
"loss": 1.2178,
|
277 |
+
"step": 205
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.18,
|
281 |
+
"learning_rate": 1.996338387291395e-05,
|
282 |
+
"loss": 1.1935,
|
283 |
+
"step": 210
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.19,
|
287 |
+
"learning_rate": 1.9959205246849e-05,
|
288 |
+
"loss": 1.2246,
|
289 |
+
"step": 215
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.19,
|
293 |
+
"learning_rate": 1.9954801380290194e-05,
|
294 |
+
"loss": 1.2003,
|
295 |
+
"step": 220
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 0.2,
|
299 |
+
"learning_rate": 1.995017237283675e-05,
|
300 |
+
"loss": 1.1842,
|
301 |
+
"step": 225
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 0.2,
|
305 |
+
"learning_rate": 1.994531832917974e-05,
|
306 |
+
"loss": 1.2052,
|
307 |
+
"step": 230
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 0.21,
|
311 |
+
"learning_rate": 1.994023935909974e-05,
|
312 |
+
"loss": 1.214,
|
313 |
+
"step": 235
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.21,
|
317 |
+
"learning_rate": 1.9934935577464312e-05,
|
318 |
+
"loss": 1.1859,
|
319 |
+
"step": 240
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.21,
|
323 |
+
"learning_rate": 1.9929407104225444e-05,
|
324 |
+
"loss": 1.2139,
|
325 |
+
"step": 245
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.22,
|
329 |
+
"learning_rate": 1.9923654064416813e-05,
|
330 |
+
"loss": 1.1902,
|
331 |
+
"step": 250
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.22,
|
335 |
+
"learning_rate": 1.991767658815096e-05,
|
336 |
+
"loss": 1.1991,
|
337 |
+
"step": 255
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 0.23,
|
341 |
+
"learning_rate": 1.9911474810616348e-05,
|
342 |
+
"loss": 1.2027,
|
343 |
+
"step": 260
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"epoch": 0.23,
|
347 |
+
"learning_rate": 1.9905048872074322e-05,
|
348 |
+
"loss": 1.184,
|
349 |
+
"step": 265
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.24,
|
353 |
+
"learning_rate": 1.989839891785591e-05,
|
354 |
+
"loss": 1.1857,
|
355 |
+
"step": 270
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.24,
|
359 |
+
"learning_rate": 1.9891525098358553e-05,
|
360 |
+
"loss": 1.199,
|
361 |
+
"step": 275
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.25,
|
365 |
+
"learning_rate": 1.9884427569042693e-05,
|
366 |
+
"loss": 1.1751,
|
367 |
+
"step": 280
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.25,
|
371 |
+
"learning_rate": 1.9877106490428275e-05,
|
372 |
+
"loss": 1.2092,
|
373 |
+
"step": 285
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.25,
|
377 |
+
"learning_rate": 1.9869562028091092e-05,
|
378 |
+
"loss": 1.1751,
|
379 |
+
"step": 290
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.26,
|
383 |
+
"learning_rate": 1.986179435265906e-05,
|
384 |
+
"loss": 1.196,
|
385 |
+
"step": 295
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.26,
|
389 |
+
"learning_rate": 1.9853803639808357e-05,
|
390 |
+
"loss": 1.192,
|
391 |
+
"step": 300
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.26,
|
395 |
+
"eval_loss": 1.1921414136886597,
|
396 |
+
"eval_runtime": 444.0535,
|
397 |
+
"eval_samples_per_second": 36.406,
|
398 |
+
"eval_steps_per_second": 1.14,
|
399 |
+
"step": 300
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.27,
|
403 |
+
"learning_rate": 1.984559007025943e-05,
|
404 |
+
"loss": 1.1938,
|
405 |
+
"step": 305
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.27,
|
409 |
+
"learning_rate": 1.983715382977293e-05,
|
410 |
+
"loss": 1.1638,
|
411 |
+
"step": 310
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.28,
|
415 |
+
"learning_rate": 1.9828495109145516e-05,
|
416 |
+
"loss": 1.1807,
|
417 |
+
"step": 315
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.28,
|
421 |
+
"learning_rate": 1.9819614104205504e-05,
|
422 |
+
"loss": 1.1772,
|
423 |
+
"step": 320
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.28,
|
427 |
+
"learning_rate": 1.9810511015808477e-05,
|
428 |
+
"loss": 1.1755,
|
429 |
+
"step": 325
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.29,
|
433 |
+
"learning_rate": 1.980118604983273e-05,
|
434 |
+
"loss": 1.17,
|
435 |
+
"step": 330
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.29,
|
439 |
+
"learning_rate": 1.979163941717459e-05,
|
440 |
+
"loss": 1.2216,
|
441 |
+
"step": 335
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.3,
|
445 |
+
"learning_rate": 1.9781871333743695e-05,
|
446 |
+
"loss": 1.1751,
|
447 |
+
"step": 340
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.3,
|
451 |
+
"learning_rate": 1.9771882020458055e-05,
|
452 |
+
"loss": 1.1799,
|
453 |
+
"step": 345
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.31,
|
457 |
+
"learning_rate": 1.9761671703239108e-05,
|
458 |
+
"loss": 1.1752,
|
459 |
+
"step": 350
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.31,
|
463 |
+
"learning_rate": 1.9751240613006568e-05,
|
464 |
+
"loss": 1.1753,
|
465 |
+
"step": 355
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.32,
|
469 |
+
"learning_rate": 1.9740588985673226e-05,
|
470 |
+
"loss": 1.181,
|
471 |
+
"step": 360
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.32,
|
475 |
+
"learning_rate": 1.9729717062139616e-05,
|
476 |
+
"loss": 1.176,
|
477 |
+
"step": 365
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.32,
|
481 |
+
"learning_rate": 1.9718625088288544e-05,
|
482 |
+
"loss": 1.1694,
|
483 |
+
"step": 370
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 0.33,
|
487 |
+
"learning_rate": 1.970731331497956e-05,
|
488 |
+
"loss": 1.164,
|
489 |
+
"step": 375
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.33,
|
493 |
+
"learning_rate": 1.969578199804326e-05,
|
494 |
+
"loss": 1.1784,
|
495 |
+
"step": 380
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.34,
|
499 |
+
"learning_rate": 1.96840313982755e-05,
|
500 |
+
"loss": 1.1669,
|
501 |
+
"step": 385
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.34,
|
505 |
+
"learning_rate": 1.967206178143152e-05,
|
506 |
+
"loss": 1.1611,
|
507 |
+
"step": 390
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.35,
|
511 |
+
"learning_rate": 1.96598734182199e-05,
|
512 |
+
"loss": 1.1622,
|
513 |
+
"step": 395
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.35,
|
517 |
+
"learning_rate": 1.9647466584296474e-05,
|
518 |
+
"loss": 1.1696,
|
519 |
+
"step": 400
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.35,
|
523 |
+
"eval_loss": 1.1770251989364624,
|
524 |
+
"eval_runtime": 440.3334,
|
525 |
+
"eval_samples_per_second": 36.713,
|
526 |
+
"eval_steps_per_second": 1.149,
|
527 |
+
"step": 400
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.35,
|
531 |
+
"learning_rate": 1.9634841560258063e-05,
|
532 |
+
"loss": 1.1899,
|
533 |
+
"step": 405
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.36,
|
537 |
+
"learning_rate": 1.9621998631636156e-05,
|
538 |
+
"loss": 1.1843,
|
539 |
+
"step": 410
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.36,
|
543 |
+
"learning_rate": 1.960893808889043e-05,
|
544 |
+
"loss": 1.1701,
|
545 |
+
"step": 415
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.37,
|
549 |
+
"learning_rate": 1.9595660227402204e-05,
|
550 |
+
"loss": 1.1703,
|
551 |
+
"step": 420
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.37,
|
555 |
+
"learning_rate": 1.958216534746773e-05,
|
556 |
+
"loss": 1.1633,
|
557 |
+
"step": 425
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.38,
|
561 |
+
"learning_rate": 1.9568453754291424e-05,
|
562 |
+
"loss": 1.171,
|
563 |
+
"step": 430
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.38,
|
567 |
+
"learning_rate": 1.9554525757978958e-05,
|
568 |
+
"loss": 1.157,
|
569 |
+
"step": 435
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.39,
|
573 |
+
"learning_rate": 1.9540381673530247e-05,
|
574 |
+
"loss": 1.1708,
|
575 |
+
"step": 440
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 0.39,
|
579 |
+
"learning_rate": 1.952602182083231e-05,
|
580 |
+
"loss": 1.1612,
|
581 |
+
"step": 445
|
582 |
+
},
|
583 |
+
{
|
584 |
+
"epoch": 0.39,
|
585 |
+
"learning_rate": 1.9511446524652062e-05,
|
586 |
+
"loss": 1.1861,
|
587 |
+
"step": 450
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.4,
|
591 |
+
"learning_rate": 1.949665611462895e-05,
|
592 |
+
"loss": 1.1564,
|
593 |
+
"step": 455
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.4,
|
597 |
+
"learning_rate": 1.9481650925267506e-05,
|
598 |
+
"loss": 1.1559,
|
599 |
+
"step": 460
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 0.41,
|
603 |
+
"learning_rate": 1.946643129592977e-05,
|
604 |
+
"loss": 1.1676,
|
605 |
+
"step": 465
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.41,
|
609 |
+
"learning_rate": 1.945099757082763e-05,
|
610 |
+
"loss": 1.1698,
|
611 |
+
"step": 470
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.42,
|
615 |
+
"learning_rate": 1.9435350099015028e-05,
|
616 |
+
"loss": 1.1639,
|
617 |
+
"step": 475
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.42,
|
621 |
+
"learning_rate": 1.9419489234380077e-05,
|
622 |
+
"loss": 1.1722,
|
623 |
+
"step": 480
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 0.42,
|
627 |
+
"learning_rate": 1.940341533563703e-05,
|
628 |
+
"loss": 1.1382,
|
629 |
+
"step": 485
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.43,
|
633 |
+
"learning_rate": 1.9387128766318205e-05,
|
634 |
+
"loss": 1.1711,
|
635 |
+
"step": 490
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.43,
|
639 |
+
"learning_rate": 1.9370629894765737e-05,
|
640 |
+
"loss": 1.1552,
|
641 |
+
"step": 495
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.44,
|
645 |
+
"learning_rate": 1.935391909412325e-05,
|
646 |
+
"loss": 1.1426,
|
647 |
+
"step": 500
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.44,
|
651 |
+
"eval_loss": 1.1665772199630737,
|
652 |
+
"eval_runtime": 442.1456,
|
653 |
+
"eval_samples_per_second": 36.563,
|
654 |
+
"eval_steps_per_second": 1.144,
|
655 |
+
"step": 500
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.44,
|
659 |
+
"learning_rate": 1.9336996742327424e-05,
|
660 |
+
"loss": 1.157,
|
661 |
+
"step": 505
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.45,
|
665 |
+
"learning_rate": 1.931986322209946e-05,
|
666 |
+
"loss": 1.1594,
|
667 |
+
"step": 510
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.45,
|
671 |
+
"learning_rate": 1.930251892093638e-05,
|
672 |
+
"loss": 1.1641,
|
673 |
+
"step": 515
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 0.46,
|
677 |
+
"learning_rate": 1.928496423110233e-05,
|
678 |
+
"loss": 1.1382,
|
679 |
+
"step": 520
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 0.46,
|
683 |
+
"learning_rate": 1.9267199549619643e-05,
|
684 |
+
"loss": 1.1556,
|
685 |
+
"step": 525
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.46,
|
689 |
+
"learning_rate": 1.92492252782599e-05,
|
690 |
+
"loss": 1.1473,
|
691 |
+
"step": 530
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 0.47,
|
695 |
+
"learning_rate": 1.9231041823534835e-05,
|
696 |
+
"loss": 1.1431,
|
697 |
+
"step": 535
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.47,
|
701 |
+
"learning_rate": 1.9212649596687136e-05,
|
702 |
+
"loss": 1.1588,
|
703 |
+
"step": 540
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.48,
|
707 |
+
"learning_rate": 1.9194049013681134e-05,
|
708 |
+
"loss": 1.1478,
|
709 |
+
"step": 545
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.48,
|
713 |
+
"learning_rate": 1.9175240495193433e-05,
|
714 |
+
"loss": 1.1595,
|
715 |
+
"step": 550
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.49,
|
719 |
+
"learning_rate": 1.915622446660335e-05,
|
720 |
+
"loss": 1.1614,
|
721 |
+
"step": 555
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 0.49,
|
725 |
+
"learning_rate": 1.9137001357983323e-05,
|
726 |
+
"loss": 1.1662,
|
727 |
+
"step": 560
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.49,
|
731 |
+
"learning_rate": 1.9117571604089172e-05,
|
732 |
+
"loss": 1.1647,
|
733 |
+
"step": 565
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.5,
|
737 |
+
"learning_rate": 1.9097935644350284e-05,
|
738 |
+
"loss": 1.1551,
|
739 |
+
"step": 570
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 0.5,
|
743 |
+
"learning_rate": 1.9078093922859642e-05,
|
744 |
+
"loss": 1.157,
|
745 |
+
"step": 575
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.51,
|
749 |
+
"learning_rate": 1.9058046888363814e-05,
|
750 |
+
"loss": 1.1419,
|
751 |
+
"step": 580
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.51,
|
755 |
+
"learning_rate": 1.9037794994252792e-05,
|
756 |
+
"loss": 1.1605,
|
757 |
+
"step": 585
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 0.52,
|
761 |
+
"learning_rate": 1.901733869854973e-05,
|
762 |
+
"loss": 1.149,
|
763 |
+
"step": 590
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 0.52,
|
767 |
+
"learning_rate": 1.8996678463900596e-05,
|
768 |
+
"loss": 1.173,
|
769 |
+
"step": 595
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.53,
|
773 |
+
"learning_rate": 1.8975814757563707e-05,
|
774 |
+
"loss": 1.1628,
|
775 |
+
"step": 600
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.53,
|
779 |
+
"eval_loss": 1.158300757408142,
|
780 |
+
"eval_runtime": 426.2016,
|
781 |
+
"eval_samples_per_second": 37.93,
|
782 |
+
"eval_steps_per_second": 1.187,
|
783 |
+
"step": 600
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.53,
|
787 |
+
"learning_rate": 1.8954748051399153e-05,
|
788 |
+
"loss": 1.1337,
|
789 |
+
"step": 605
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.53,
|
793 |
+
"learning_rate": 1.893347882185814e-05,
|
794 |
+
"loss": 1.1455,
|
795 |
+
"step": 610
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 0.54,
|
799 |
+
"learning_rate": 1.891200754997219e-05,
|
800 |
+
"loss": 1.1667,
|
801 |
+
"step": 615
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.54,
|
805 |
+
"learning_rate": 1.88903347213423e-05,
|
806 |
+
"loss": 1.1419,
|
807 |
+
"step": 620
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.55,
|
811 |
+
"learning_rate": 1.886846082612792e-05,
|
812 |
+
"loss": 1.1458,
|
813 |
+
"step": 625
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 0.55,
|
817 |
+
"learning_rate": 1.8846386359035892e-05,
|
818 |
+
"loss": 1.1459,
|
819 |
+
"step": 630
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.56,
|
823 |
+
"learning_rate": 1.8824111819309256e-05,
|
824 |
+
"loss": 1.1676,
|
825 |
+
"step": 635
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.56,
|
829 |
+
"learning_rate": 1.8801637710715945e-05,
|
830 |
+
"loss": 1.1556,
|
831 |
+
"step": 640
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.57,
|
835 |
+
"learning_rate": 1.8778964541537422e-05,
|
836 |
+
"loss": 1.1544,
|
837 |
+
"step": 645
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.57,
|
841 |
+
"learning_rate": 1.8756092824557148e-05,
|
842 |
+
"loss": 1.1434,
|
843 |
+
"step": 650
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.57,
|
847 |
+
"learning_rate": 1.873302307704902e-05,
|
848 |
+
"loss": 1.1492,
|
849 |
+
"step": 655
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.58,
|
853 |
+
"learning_rate": 1.870975582076564e-05,
|
854 |
+
"loss": 1.1547,
|
855 |
+
"step": 660
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.58,
|
859 |
+
"learning_rate": 1.8686291581926546e-05,
|
860 |
+
"loss": 1.1438,
|
861 |
+
"step": 665
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.59,
|
865 |
+
"learning_rate": 1.8662630891206276e-05,
|
866 |
+
"loss": 1.1334,
|
867 |
+
"step": 670
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.59,
|
871 |
+
"learning_rate": 1.86387742837224e-05,
|
872 |
+
"loss": 1.1553,
|
873 |
+
"step": 675
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.6,
|
877 |
+
"learning_rate": 1.86147222990234e-05,
|
878 |
+
"loss": 1.1647,
|
879 |
+
"step": 680
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.6,
|
883 |
+
"learning_rate": 1.8590475481076468e-05,
|
884 |
+
"loss": 1.1443,
|
885 |
+
"step": 685
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.6,
|
889 |
+
"learning_rate": 1.8566034378255198e-05,
|
890 |
+
"loss": 1.1461,
|
891 |
+
"step": 690
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.61,
|
895 |
+
"learning_rate": 1.8541399543327206e-05,
|
896 |
+
"loss": 1.1391,
|
897 |
+
"step": 695
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 0.61,
|
901 |
+
"learning_rate": 1.8516571533441606e-05,
|
902 |
+
"loss": 1.1501,
|
903 |
+
"step": 700
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.61,
|
907 |
+
"eval_loss": 1.151345133781433,
|
908 |
+
"eval_runtime": 426.3067,
|
909 |
+
"eval_samples_per_second": 37.921,
|
910 |
+
"eval_steps_per_second": 1.187,
|
911 |
+
"step": 700
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 0.62,
|
915 |
+
"learning_rate": 1.8491550910116415e-05,
|
916 |
+
"loss": 1.1488,
|
917 |
+
"step": 705
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 0.62,
|
921 |
+
"learning_rate": 1.8466338239225862e-05,
|
922 |
+
"loss": 1.1213,
|
923 |
+
"step": 710
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 0.63,
|
927 |
+
"learning_rate": 1.8440934090987576e-05,
|
928 |
+
"loss": 1.1292,
|
929 |
+
"step": 715
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.63,
|
933 |
+
"learning_rate": 1.8415339039949702e-05,
|
934 |
+
"loss": 1.1585,
|
935 |
+
"step": 720
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.64,
|
939 |
+
"learning_rate": 1.8389553664977905e-05,
|
940 |
+
"loss": 1.1279,
|
941 |
+
"step": 725
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.64,
|
945 |
+
"learning_rate": 1.8363578549242266e-05,
|
946 |
+
"loss": 1.167,
|
947 |
+
"step": 730
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.64,
|
951 |
+
"learning_rate": 1.8337414280204116e-05,
|
952 |
+
"loss": 1.1522,
|
953 |
+
"step": 735
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 0.65,
|
957 |
+
"learning_rate": 1.8311061449602725e-05,
|
958 |
+
"loss": 1.143,
|
959 |
+
"step": 740
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 0.65,
|
963 |
+
"learning_rate": 1.8284520653441936e-05,
|
964 |
+
"loss": 1.1549,
|
965 |
+
"step": 745
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 0.66,
|
969 |
+
"learning_rate": 1.8257792491976676e-05,
|
970 |
+
"loss": 1.1412,
|
971 |
+
"step": 750
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 0.66,
|
975 |
+
"learning_rate": 1.8230877569699387e-05,
|
976 |
+
"loss": 1.1554,
|
977 |
+
"step": 755
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"epoch": 0.67,
|
981 |
+
"learning_rate": 1.8203776495326346e-05,
|
982 |
+
"loss": 1.1423,
|
983 |
+
"step": 760
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.67,
|
987 |
+
"learning_rate": 1.8176489881783915e-05,
|
988 |
+
"loss": 1.1276,
|
989 |
+
"step": 765
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.67,
|
993 |
+
"learning_rate": 1.8149018346194655e-05,
|
994 |
+
"loss": 1.1276,
|
995 |
+
"step": 770
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 0.68,
|
999 |
+
"learning_rate": 1.8121362509863397e-05,
|
1000 |
+
"loss": 1.1334,
|
1001 |
+
"step": 775
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 0.68,
|
1005 |
+
"learning_rate": 1.8093522998263154e-05,
|
1006 |
+
"loss": 1.1267,
|
1007 |
+
"step": 780
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"epoch": 0.69,
|
1011 |
+
"learning_rate": 1.8065500441021018e-05,
|
1012 |
+
"loss": 1.1465,
|
1013 |
+
"step": 785
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 0.69,
|
1017 |
+
"learning_rate": 1.803729547190389e-05,
|
1018 |
+
"loss": 1.1207,
|
1019 |
+
"step": 790
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 0.7,
|
1023 |
+
"learning_rate": 1.800890872880414e-05,
|
1024 |
+
"loss": 1.1483,
|
1025 |
+
"step": 795
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.7,
|
1029 |
+
"learning_rate": 1.7980340853725223e-05,
|
1030 |
+
"loss": 1.137,
|
1031 |
+
"step": 800
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.7,
|
1035 |
+
"eval_loss": 1.1456836462020874,
|
1036 |
+
"eval_runtime": 426.0503,
|
1037 |
+
"eval_samples_per_second": 37.944,
|
1038 |
+
"eval_steps_per_second": 1.188,
|
1039 |
+
"step": 800
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.71,
|
1043 |
+
"learning_rate": 1.795159249276711e-05,
|
1044 |
+
"loss": 1.1212,
|
1045 |
+
"step": 805
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.71,
|
1049 |
+
"learning_rate": 1.792266429611171e-05,
|
1050 |
+
"loss": 1.1259,
|
1051 |
+
"step": 810
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 0.71,
|
1055 |
+
"learning_rate": 1.7893556918008136e-05,
|
1056 |
+
"loss": 1.1232,
|
1057 |
+
"step": 815
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 0.72,
|
1061 |
+
"learning_rate": 1.7864271016757942e-05,
|
1062 |
+
"loss": 1.1163,
|
1063 |
+
"step": 820
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"epoch": 0.72,
|
1067 |
+
"learning_rate": 1.7834807254700212e-05,
|
1068 |
+
"loss": 1.138,
|
1069 |
+
"step": 825
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 0.73,
|
1073 |
+
"learning_rate": 1.7805166298196577e-05,
|
1074 |
+
"loss": 1.134,
|
1075 |
+
"step": 830
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"epoch": 0.73,
|
1079 |
+
"learning_rate": 1.7775348817616164e-05,
|
1080 |
+
"loss": 1.1575,
|
1081 |
+
"step": 835
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.74,
|
1085 |
+
"learning_rate": 1.7745355487320418e-05,
|
1086 |
+
"loss": 1.138,
|
1087 |
+
"step": 840
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.74,
|
1091 |
+
"learning_rate": 1.7715186985647857e-05,
|
1092 |
+
"loss": 1.1504,
|
1093 |
+
"step": 845
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"epoch": 0.74,
|
1097 |
+
"learning_rate": 1.768484399489873e-05,
|
1098 |
+
"loss": 1.1296,
|
1099 |
+
"step": 850
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"epoch": 0.75,
|
1103 |
+
"learning_rate": 1.7654327201319584e-05,
|
1104 |
+
"loss": 1.1413,
|
1105 |
+
"step": 855
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"epoch": 0.75,
|
1109 |
+
"learning_rate": 1.762363729508775e-05,
|
1110 |
+
"loss": 1.1365,
|
1111 |
+
"step": 860
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 0.76,
|
1115 |
+
"learning_rate": 1.7592774970295714e-05,
|
1116 |
+
"loss": 1.1515,
|
1117 |
+
"step": 865
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"epoch": 0.76,
|
1121 |
+
"learning_rate": 1.7561740924935456e-05,
|
1122 |
+
"loss": 1.1423,
|
1123 |
+
"step": 870
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.77,
|
1127 |
+
"learning_rate": 1.753053586088263e-05,
|
1128 |
+
"loss": 1.1244,
|
1129 |
+
"step": 875
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.77,
|
1133 |
+
"learning_rate": 1.7499160483880694e-05,
|
1134 |
+
"loss": 1.1376,
|
1135 |
+
"step": 880
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 0.78,
|
1139 |
+
"learning_rate": 1.7467615503524973e-05,
|
1140 |
+
"loss": 1.1232,
|
1141 |
+
"step": 885
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 0.78,
|
1145 |
+
"learning_rate": 1.7435901633246585e-05,
|
1146 |
+
"loss": 1.1233,
|
1147 |
+
"step": 890
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"epoch": 0.78,
|
1151 |
+
"learning_rate": 1.740401959029632e-05,
|
1152 |
+
"loss": 1.1284,
|
1153 |
+
"step": 895
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 0.79,
|
1157 |
+
"learning_rate": 1.7371970095728408e-05,
|
1158 |
+
"loss": 1.1321,
|
1159 |
+
"step": 900
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 0.79,
|
1163 |
+
"eval_loss": 1.140657663345337,
|
1164 |
+
"eval_runtime": 424.8606,
|
1165 |
+
"eval_samples_per_second": 38.05,
|
1166 |
+
"eval_steps_per_second": 1.191,
|
1167 |
+
"step": 900
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 0.79,
|
1171 |
+
"learning_rate": 1.7339753874384218e-05,
|
1172 |
+
"loss": 1.1389,
|
1173 |
+
"step": 905
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 0.8,
|
1177 |
+
"learning_rate": 1.730737165487587e-05,
|
1178 |
+
"loss": 1.1325,
|
1179 |
+
"step": 910
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.8,
|
1183 |
+
"learning_rate": 1.7274824169569747e-05,
|
1184 |
+
"loss": 1.1477,
|
1185 |
+
"step": 915
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.81,
|
1189 |
+
"learning_rate": 1.7242112154569928e-05,
|
1190 |
+
"loss": 1.1233,
|
1191 |
+
"step": 920
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.81,
|
1195 |
+
"learning_rate": 1.7209236349701553e-05,
|
1196 |
+
"loss": 1.1324,
|
1197 |
+
"step": 925
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.81,
|
1201 |
+
"learning_rate": 1.717619749849409e-05,
|
1202 |
+
"loss": 1.1241,
|
1203 |
+
"step": 930
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 0.82,
|
1207 |
+
"learning_rate": 1.7142996348164508e-05,
|
1208 |
+
"loss": 1.1471,
|
1209 |
+
"step": 935
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.82,
|
1213 |
+
"learning_rate": 1.710963364960038e-05,
|
1214 |
+
"loss": 1.1388,
|
1215 |
+
"step": 940
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.83,
|
1219 |
+
"learning_rate": 1.707611015734291e-05,
|
1220 |
+
"loss": 1.1375,
|
1221 |
+
"step": 945
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.83,
|
1225 |
+
"learning_rate": 1.704242662956986e-05,
|
1226 |
+
"loss": 1.1476,
|
1227 |
+
"step": 950
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.84,
|
1231 |
+
"learning_rate": 1.700858382807841e-05,
|
1232 |
+
"loss": 1.1454,
|
1233 |
+
"step": 955
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.84,
|
1237 |
+
"learning_rate": 1.6974582518267913e-05,
|
1238 |
+
"loss": 1.1263,
|
1239 |
+
"step": 960
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.85,
|
1243 |
+
"learning_rate": 1.694042346912261e-05,
|
1244 |
+
"loss": 1.1206,
|
1245 |
+
"step": 965
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.85,
|
1249 |
+
"learning_rate": 1.6906107453194207e-05,
|
1250 |
+
"loss": 1.1315,
|
1251 |
+
"step": 970
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.85,
|
1255 |
+
"learning_rate": 1.687163524658444e-05,
|
1256 |
+
"loss": 1.1444,
|
1257 |
+
"step": 975
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.86,
|
1261 |
+
"learning_rate": 1.6837007628927483e-05,
|
1262 |
+
"loss": 1.1397,
|
1263 |
+
"step": 980
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.86,
|
1267 |
+
"learning_rate": 1.680222538337235e-05,
|
1268 |
+
"loss": 1.1232,
|
1269 |
+
"step": 985
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.87,
|
1273 |
+
"learning_rate": 1.6767289296565155e-05,
|
1274 |
+
"loss": 1.1276,
|
1275 |
+
"step": 990
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.87,
|
1279 |
+
"learning_rate": 1.6732200158631343e-05,
|
1280 |
+
"loss": 1.1415,
|
1281 |
+
"step": 995
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.88,
|
1285 |
+
"learning_rate": 1.6696958763157808e-05,
|
1286 |
+
"loss": 1.1156,
|
1287 |
+
"step": 1000
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.88,
|
1291 |
+
"eval_loss": 1.1359467506408691,
|
1292 |
+
"eval_runtime": 426.3548,
|
1293 |
+
"eval_samples_per_second": 37.917,
|
1294 |
+
"eval_steps_per_second": 1.187,
|
1295 |
+
"step": 1000
|
1296 |
+
},
|
1297 |
+
{
|
1298 |
+
"epoch": 0.88,
|
1299 |
+
"learning_rate": 1.666156590717495e-05,
|
1300 |
+
"loss": 1.1168,
|
1301 |
+
"step": 1005
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 0.88,
|
1305 |
+
"learning_rate": 1.6626022391138643e-05,
|
1306 |
+
"loss": 1.1237,
|
1307 |
+
"step": 1010
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.89,
|
1311 |
+
"learning_rate": 1.6590329018912134e-05,
|
1312 |
+
"loss": 1.1189,
|
1313 |
+
"step": 1015
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.89,
|
1317 |
+
"learning_rate": 1.655448659774787e-05,
|
1318 |
+
"loss": 1.1146,
|
1319 |
+
"step": 1020
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.9,
|
1323 |
+
"learning_rate": 1.6518495938269242e-05,
|
1324 |
+
"loss": 1.135,
|
1325 |
+
"step": 1025
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.9,
|
1329 |
+
"learning_rate": 1.6482357854452223e-05,
|
1330 |
+
"loss": 1.113,
|
1331 |
+
"step": 1030
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 0.91,
|
1335 |
+
"learning_rate": 1.6446073163607e-05,
|
1336 |
+
"loss": 1.1233,
|
1337 |
+
"step": 1035
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 0.91,
|
1341 |
+
"learning_rate": 1.6409642686359472e-05,
|
1342 |
+
"loss": 1.1344,
|
1343 |
+
"step": 1040
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 0.92,
|
1347 |
+
"learning_rate": 1.637306724663267e-05,
|
1348 |
+
"loss": 1.1327,
|
1349 |
+
"step": 1045
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.92,
|
1353 |
+
"learning_rate": 1.6336347671628162e-05,
|
1354 |
+
"loss": 1.1236,
|
1355 |
+
"step": 1050
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 0.92,
|
1359 |
+
"learning_rate": 1.629948479180731e-05,
|
1360 |
+
"loss": 1.1192,
|
1361 |
+
"step": 1055
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.93,
|
1365 |
+
"learning_rate": 1.6262479440872505e-05,
|
1366 |
+
"loss": 1.1621,
|
1367 |
+
"step": 1060
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.93,
|
1371 |
+
"learning_rate": 1.622533245574832e-05,
|
1372 |
+
"loss": 1.1318,
|
1373 |
+
"step": 1065
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 0.94,
|
1377 |
+
"learning_rate": 1.618804467656256e-05,
|
1378 |
+
"loss": 1.1231,
|
1379 |
+
"step": 1070
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 0.94,
|
1383 |
+
"learning_rate": 1.6150616946627272e-05,
|
1384 |
+
"loss": 1.1166,
|
1385 |
+
"step": 1075
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 0.95,
|
1389 |
+
"learning_rate": 1.6113050112419683e-05,
|
1390 |
+
"loss": 1.1252,
|
1391 |
+
"step": 1080
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 0.95,
|
1395 |
+
"learning_rate": 1.6075345023563035e-05,
|
1396 |
+
"loss": 1.113,
|
1397 |
+
"step": 1085
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 0.95,
|
1401 |
+
"learning_rate": 1.6037502532807382e-05,
|
1402 |
+
"loss": 1.1102,
|
1403 |
+
"step": 1090
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.96,
|
1407 |
+
"learning_rate": 1.599952349601031e-05,
|
1408 |
+
"loss": 1.1273,
|
1409 |
+
"step": 1095
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.96,
|
1413 |
+
"learning_rate": 1.5961408772117567e-05,
|
1414 |
+
"loss": 1.1395,
|
1415 |
+
"step": 1100
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 0.96,
|
1419 |
+
"eval_loss": 1.1318247318267822,
|
1420 |
+
"eval_runtime": 426.4822,
|
1421 |
+
"eval_samples_per_second": 37.905,
|
1422 |
+
"eval_steps_per_second": 1.186,
|
1423 |
+
"step": 1100
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.97,
|
1427 |
+
"learning_rate": 1.592315922314364e-05,
|
1428 |
+
"loss": 1.134,
|
1429 |
+
"step": 1105
|
1430 |
+
},
|
1431 |
+
{
|
1432 |
+
"epoch": 0.97,
|
1433 |
+
"learning_rate": 1.588477571415226e-05,
|
1434 |
+
"loss": 1.108,
|
1435 |
+
"step": 1110
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 0.98,
|
1439 |
+
"learning_rate": 1.5846259113236855e-05,
|
1440 |
+
"loss": 1.103,
|
1441 |
+
"step": 1115
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 0.98,
|
1445 |
+
"learning_rate": 1.580761029150089e-05,
|
1446 |
+
"loss": 1.1193,
|
1447 |
+
"step": 1120
|
1448 |
+
},
|
1449 |
+
{
|
1450 |
+
"epoch": 0.99,
|
1451 |
+
"learning_rate": 1.5768830123038172e-05,
|
1452 |
+
"loss": 1.1121,
|
1453 |
+
"step": 1125
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"epoch": 0.99,
|
1457 |
+
"learning_rate": 1.57299194849131e-05,
|
1458 |
+
"loss": 1.1311,
|
1459 |
+
"step": 1130
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 0.99,
|
1463 |
+
"learning_rate": 1.5690879257140804e-05,
|
1464 |
+
"loss": 1.1179,
|
1465 |
+
"step": 1135
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.0,
|
1469 |
+
"learning_rate": 1.5651710322667262e-05,
|
1470 |
+
"loss": 1.1305,
|
1471 |
+
"step": 1140
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 1.0,
|
1475 |
+
"learning_rate": 1.5612413567349314e-05,
|
1476 |
+
"loss": 1.0956,
|
1477 |
+
"step": 1145
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"epoch": 1.01,
|
1481 |
+
"learning_rate": 1.557298987993465e-05,
|
1482 |
+
"loss": 1.0383,
|
1483 |
+
"step": 1150
|
1484 |
+
},
|
1485 |
+
{
|
1486 |
+
"epoch": 1.01,
|
1487 |
+
"learning_rate": 1.553344015204168e-05,
|
1488 |
+
"loss": 1.0692,
|
1489 |
+
"step": 1155
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 1.02,
|
1493 |
+
"learning_rate": 1.5493765278139397e-05,
|
1494 |
+
"loss": 1.0767,
|
1495 |
+
"step": 1160
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 1.02,
|
1499 |
+
"learning_rate": 1.5453966155527133e-05,
|
1500 |
+
"loss": 1.0617,
|
1501 |
+
"step": 1165
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 1.02,
|
1505 |
+
"learning_rate": 1.541404368431426e-05,
|
1506 |
+
"loss": 1.075,
|
1507 |
+
"step": 1170
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.03,
|
1511 |
+
"learning_rate": 1.537399876739985e-05,
|
1512 |
+
"loss": 1.0709,
|
1513 |
+
"step": 1175
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 1.03,
|
1517 |
+
"learning_rate": 1.5333832310452232e-05,
|
1518 |
+
"loss": 1.0725,
|
1519 |
+
"step": 1180
|
1520 |
+
},
|
1521 |
+
{
|
1522 |
+
"epoch": 1.04,
|
1523 |
+
"learning_rate": 1.5293545221888542e-05,
|
1524 |
+
"loss": 1.071,
|
1525 |
+
"step": 1185
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 1.04,
|
1529 |
+
"learning_rate": 1.525313841285414e-05,
|
1530 |
+
"loss": 1.0702,
|
1531 |
+
"step": 1190
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 1.05,
|
1535 |
+
"learning_rate": 1.5212612797202033e-05,
|
1536 |
+
"loss": 1.0801,
|
1537 |
+
"step": 1195
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"epoch": 1.05,
|
1541 |
+
"learning_rate": 1.517196929147219e-05,
|
1542 |
+
"loss": 1.0564,
|
1543 |
+
"step": 1200
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 1.05,
|
1547 |
+
"eval_loss": 1.1314754486083984,
|
1548 |
+
"eval_runtime": 425.7152,
|
1549 |
+
"eval_samples_per_second": 37.974,
|
1550 |
+
"eval_steps_per_second": 1.189,
|
1551 |
+
"step": 1200
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 1.06,
|
1555 |
+
"learning_rate": 1.5131208814870822e-05,
|
1556 |
+
"loss": 1.0822,
|
1557 |
+
"step": 1205
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.06,
|
1561 |
+
"learning_rate": 1.5090332289249586e-05,
|
1562 |
+
"loss": 1.0505,
|
1563 |
+
"step": 1210
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.06,
|
1567 |
+
"learning_rate": 1.5049340639084742e-05,
|
1568 |
+
"loss": 1.0704,
|
1569 |
+
"step": 1215
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 1.07,
|
1573 |
+
"learning_rate": 1.5008234791456242e-05,
|
1574 |
+
"loss": 1.0645,
|
1575 |
+
"step": 1220
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 1.07,
|
1579 |
+
"learning_rate": 1.4967015676026768e-05,
|
1580 |
+
"loss": 1.0748,
|
1581 |
+
"step": 1225
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 1.08,
|
1585 |
+
"learning_rate": 1.4925684225020694e-05,
|
1586 |
+
"loss": 1.0557,
|
1587 |
+
"step": 1230
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 1.08,
|
1591 |
+
"learning_rate": 1.4884241373203014e-05,
|
1592 |
+
"loss": 1.0557,
|
1593 |
+
"step": 1235
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 1.09,
|
1597 |
+
"learning_rate": 1.4842688057858203e-05,
|
1598 |
+
"loss": 1.0669,
|
1599 |
+
"step": 1240
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.09,
|
1603 |
+
"learning_rate": 1.4801025218769001e-05,
|
1604 |
+
"loss": 1.0655,
|
1605 |
+
"step": 1245
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.1,
|
1609 |
+
"learning_rate": 1.4759253798195183e-05,
|
1610 |
+
"loss": 1.0675,
|
1611 |
+
"step": 1250
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 1.1,
|
1615 |
+
"learning_rate": 1.4717374740852236e-05,
|
1616 |
+
"loss": 1.0824,
|
1617 |
+
"step": 1255
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 1.1,
|
1621 |
+
"learning_rate": 1.467538899388998e-05,
|
1622 |
+
"loss": 1.0723,
|
1623 |
+
"step": 1260
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 1.11,
|
1627 |
+
"learning_rate": 1.463329750687118e-05,
|
1628 |
+
"loss": 1.0569,
|
1629 |
+
"step": 1265
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 1.11,
|
1633 |
+
"learning_rate": 1.459110123175004e-05,
|
1634 |
+
"loss": 1.0472,
|
1635 |
+
"step": 1270
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 1.12,
|
1639 |
+
"learning_rate": 1.4548801122850682e-05,
|
1640 |
+
"loss": 1.0633,
|
1641 |
+
"step": 1275
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.12,
|
1645 |
+
"learning_rate": 1.450639813684558e-05,
|
1646 |
+
"loss": 1.0774,
|
1647 |
+
"step": 1280
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.13,
|
1651 |
+
"learning_rate": 1.4463893232733886e-05,
|
1652 |
+
"loss": 1.0695,
|
1653 |
+
"step": 1285
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"epoch": 1.13,
|
1657 |
+
"learning_rate": 1.4421287371819781e-05,
|
1658 |
+
"loss": 1.0711,
|
1659 |
+
"step": 1290
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 1.13,
|
1663 |
+
"learning_rate": 1.4378581517690711e-05,
|
1664 |
+
"loss": 1.0562,
|
1665 |
+
"step": 1295
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 1.14,
|
1669 |
+
"learning_rate": 1.4335776636195605e-05,
|
1670 |
+
"loss": 1.0594,
|
1671 |
+
"step": 1300
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 1.14,
|
1675 |
+
"eval_loss": 1.1295197010040283,
|
1676 |
+
"eval_runtime": 425.2423,
|
1677 |
+
"eval_samples_per_second": 38.016,
|
1678 |
+
"eval_steps_per_second": 1.19,
|
1679 |
+
"step": 1300
|
1680 |
+
},
|
1681 |
+
{
|
1682 |
+
"epoch": 1.14,
|
1683 |
+
"learning_rate": 1.4292873695423012e-05,
|
1684 |
+
"loss": 1.0657,
|
1685 |
+
"step": 1305
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 1.15,
|
1689 |
+
"learning_rate": 1.4249873665679241e-05,
|
1690 |
+
"loss": 1.0535,
|
1691 |
+
"step": 1310
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 1.15,
|
1695 |
+
"learning_rate": 1.4206777519466375e-05,
|
1696 |
+
"loss": 1.0706,
|
1697 |
+
"step": 1315
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 1.16,
|
1701 |
+
"learning_rate": 1.4163586231460307e-05,
|
1702 |
+
"loss": 1.0553,
|
1703 |
+
"step": 1320
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 1.16,
|
1707 |
+
"learning_rate": 1.4120300778488687e-05,
|
1708 |
+
"loss": 1.068,
|
1709 |
+
"step": 1325
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"epoch": 1.17,
|
1713 |
+
"learning_rate": 1.4076922139508828e-05,
|
1714 |
+
"loss": 1.0535,
|
1715 |
+
"step": 1330
|
1716 |
+
},
|
1717 |
+
{
|
1718 |
+
"epoch": 1.17,
|
1719 |
+
"learning_rate": 1.4033451295585565e-05,
|
1720 |
+
"loss": 1.0633,
|
1721 |
+
"step": 1335
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 1.17,
|
1725 |
+
"learning_rate": 1.3989889229869071e-05,
|
1726 |
+
"loss": 1.0646,
|
1727 |
+
"step": 1340
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 1.18,
|
1731 |
+
"learning_rate": 1.394623692757262e-05,
|
1732 |
+
"loss": 1.0881,
|
1733 |
+
"step": 1345
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 1.18,
|
1737 |
+
"learning_rate": 1.3902495375950303e-05,
|
1738 |
+
"loss": 1.0478,
|
1739 |
+
"step": 1350
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 1.19,
|
1743 |
+
"learning_rate": 1.3858665564274699e-05,
|
1744 |
+
"loss": 1.0718,
|
1745 |
+
"step": 1355
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.19,
|
1749 |
+
"learning_rate": 1.3814748483814511e-05,
|
1750 |
+
"loss": 1.0504,
|
1751 |
+
"step": 1360
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"epoch": 1.2,
|
1755 |
+
"learning_rate": 1.3770745127812134e-05,
|
1756 |
+
"loss": 1.0751,
|
1757 |
+
"step": 1365
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 1.2,
|
1761 |
+
"learning_rate": 1.3726656491461196e-05,
|
1762 |
+
"loss": 1.0644,
|
1763 |
+
"step": 1370
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"epoch": 1.2,
|
1767 |
+
"learning_rate": 1.3682483571884064e-05,
|
1768 |
+
"loss": 1.0691,
|
1769 |
+
"step": 1375
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 1.21,
|
1773 |
+
"learning_rate": 1.3638227368109268e-05,
|
1774 |
+
"loss": 1.067,
|
1775 |
+
"step": 1380
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 1.21,
|
1779 |
+
"learning_rate": 1.3593888881048922e-05,
|
1780 |
+
"loss": 1.06,
|
1781 |
+
"step": 1385
|
1782 |
+
},
|
1783 |
+
{
|
1784 |
+
"epoch": 1.22,
|
1785 |
+
"learning_rate": 1.3549469113476087e-05,
|
1786 |
+
"loss": 1.0621,
|
1787 |
+
"step": 1390
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 1.22,
|
1791 |
+
"learning_rate": 1.3504969070002091e-05,
|
1792 |
+
"loss": 1.0634,
|
1793 |
+
"step": 1395
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 1.23,
|
1797 |
+
"learning_rate": 1.3460389757053802e-05,
|
1798 |
+
"loss": 1.0711,
|
1799 |
+
"step": 1400
|
1800 |
+
},
|
1801 |
+
{
|
1802 |
+
"epoch": 1.23,
|
1803 |
+
"eval_loss": 1.1273547410964966,
|
1804 |
+
"eval_runtime": 424.8164,
|
1805 |
+
"eval_samples_per_second": 38.054,
|
1806 |
+
"eval_steps_per_second": 1.191,
|
1807 |
+
"step": 1400
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 1.23,
|
1811 |
+
"learning_rate": 1.3415732182850873e-05,
|
1812 |
+
"loss": 1.0606,
|
1813 |
+
"step": 1405
|
1814 |
+
},
|
1815 |
+
{
|
1816 |
+
"epoch": 1.24,
|
1817 |
+
"learning_rate": 1.3370997357382943e-05,
|
1818 |
+
"loss": 1.0958,
|
1819 |
+
"step": 1410
|
1820 |
+
},
|
1821 |
+
{
|
1822 |
+
"epoch": 1.24,
|
1823 |
+
"learning_rate": 1.3326186292386778e-05,
|
1824 |
+
"loss": 1.069,
|
1825 |
+
"step": 1415
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 1.24,
|
1829 |
+
"learning_rate": 1.3281300001323416e-05,
|
1830 |
+
"loss": 1.071,
|
1831 |
+
"step": 1420
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 1.25,
|
1835 |
+
"learning_rate": 1.3236339499355217e-05,
|
1836 |
+
"loss": 1.071,
|
1837 |
+
"step": 1425
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 1.25,
|
1841 |
+
"learning_rate": 1.3191305803322929e-05,
|
1842 |
+
"loss": 1.0537,
|
1843 |
+
"step": 1430
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 1.26,
|
1847 |
+
"learning_rate": 1.3146199931722674e-05,
|
1848 |
+
"loss": 1.0743,
|
1849 |
+
"step": 1435
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"epoch": 1.26,
|
1853 |
+
"learning_rate": 1.3101022904682918e-05,
|
1854 |
+
"loss": 1.0541,
|
1855 |
+
"step": 1440
|
1856 |
+
},
|
1857 |
+
{
|
1858 |
+
"epoch": 1.27,
|
1859 |
+
"learning_rate": 1.3055775743941409e-05,
|
1860 |
+
"loss": 1.0694,
|
1861 |
+
"step": 1445
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 1.27,
|
1865 |
+
"learning_rate": 1.3010459472822046e-05,
|
1866 |
+
"loss": 1.0468,
|
1867 |
+
"step": 1450
|
1868 |
+
},
|
1869 |
+
{
|
1870 |
+
"epoch": 1.27,
|
1871 |
+
"learning_rate": 1.2965075116211769e-05,
|
1872 |
+
"loss": 1.0636,
|
1873 |
+
"step": 1455
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 1.28,
|
1877 |
+
"learning_rate": 1.2919623700537342e-05,
|
1878 |
+
"loss": 1.0709,
|
1879 |
+
"step": 1460
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 1.28,
|
1883 |
+
"learning_rate": 1.287410625374217e-05,
|
1884 |
+
"loss": 1.0631,
|
1885 |
+
"step": 1465
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 1.29,
|
1889 |
+
"learning_rate": 1.282852380526303e-05,
|
1890 |
+
"loss": 1.0554,
|
1891 |
+
"step": 1470
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"epoch": 1.29,
|
1895 |
+
"learning_rate": 1.2782877386006807e-05,
|
1896 |
+
"loss": 1.0683,
|
1897 |
+
"step": 1475
|
1898 |
+
},
|
1899 |
+
{
|
1900 |
+
"epoch": 1.3,
|
1901 |
+
"learning_rate": 1.2737168028327163e-05,
|
1902 |
+
"loss": 1.0509,
|
1903 |
+
"step": 1480
|
1904 |
+
},
|
1905 |
+
{
|
1906 |
+
"epoch": 1.3,
|
1907 |
+
"learning_rate": 1.2691396766001192e-05,
|
1908 |
+
"loss": 1.0449,
|
1909 |
+
"step": 1485
|
1910 |
+
},
|
1911 |
+
{
|
1912 |
+
"epoch": 1.31,
|
1913 |
+
"learning_rate": 1.2645564634206054e-05,
|
1914 |
+
"loss": 1.0571,
|
1915 |
+
"step": 1490
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 1.31,
|
1919 |
+
"learning_rate": 1.2599672669495537e-05,
|
1920 |
+
"loss": 1.0684,
|
1921 |
+
"step": 1495
|
1922 |
+
},
|
1923 |
+
{
|
1924 |
+
"epoch": 1.31,
|
1925 |
+
"learning_rate": 1.2553721909776644e-05,
|
1926 |
+
"loss": 1.0624,
|
1927 |
+
"step": 1500
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 1.31,
|
1931 |
+
"eval_loss": 1.125585675239563,
|
1932 |
+
"eval_runtime": 426.6579,
|
1933 |
+
"eval_samples_per_second": 37.89,
|
1934 |
+
"eval_steps_per_second": 1.186,
|
1935 |
+
"step": 1500
|
1936 |
+
},
|
1937 |
+
{
|
1938 |
+
"epoch": 1.32,
|
1939 |
+
"learning_rate": 1.2507713394286088e-05,
|
1940 |
+
"loss": 1.0529,
|
1941 |
+
"step": 1505
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.32,
|
1945 |
+
"learning_rate": 1.246164816356682e-05,
|
1946 |
+
"loss": 1.0729,
|
1947 |
+
"step": 1510
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 1.33,
|
1951 |
+
"learning_rate": 1.2415527259444471e-05,
|
1952 |
+
"loss": 1.0738,
|
1953 |
+
"step": 1515
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 1.33,
|
1957 |
+
"learning_rate": 1.2369351725003802e-05,
|
1958 |
+
"loss": 1.0858,
|
1959 |
+
"step": 1520
|
1960 |
+
},
|
1961 |
+
{
|
1962 |
+
"epoch": 1.34,
|
1963 |
+
"learning_rate": 1.232312260456511e-05,
|
1964 |
+
"loss": 1.0608,
|
1965 |
+
"step": 1525
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 1.34,
|
1969 |
+
"learning_rate": 1.2276840943660613e-05,
|
1970 |
+
"loss": 1.0667,
|
1971 |
+
"step": 1530
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 1.34,
|
1975 |
+
"learning_rate": 1.2230507789010792e-05,
|
1976 |
+
"loss": 1.0672,
|
1977 |
+
"step": 1535
|
1978 |
+
},
|
1979 |
+
{
|
1980 |
+
"epoch": 1.35,
|
1981 |
+
"learning_rate": 1.2184124188500735e-05,
|
1982 |
+
"loss": 1.0576,
|
1983 |
+
"step": 1540
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.35,
|
1987 |
+
"learning_rate": 1.2137691191156425e-05,
|
1988 |
+
"loss": 1.049,
|
1989 |
+
"step": 1545
|
1990 |
+
},
|
1991 |
+
{
|
1992 |
+
"epoch": 1.36,
|
1993 |
+
"learning_rate": 1.209120984712102e-05,
|
1994 |
+
"loss": 1.0601,
|
1995 |
+
"step": 1550
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 1.36,
|
1999 |
+
"learning_rate": 1.2044681207631104e-05,
|
2000 |
+
"loss": 1.0605,
|
2001 |
+
"step": 1555
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 1.37,
|
2005 |
+
"learning_rate": 1.1998106324992906e-05,
|
2006 |
+
"loss": 1.0784,
|
2007 |
+
"step": 1560
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 1.37,
|
2011 |
+
"learning_rate": 1.1951486252558508e-05,
|
2012 |
+
"loss": 1.0623,
|
2013 |
+
"step": 1565
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"epoch": 1.38,
|
2017 |
+
"learning_rate": 1.1904822044702017e-05,
|
2018 |
+
"loss": 1.0658,
|
2019 |
+
"step": 1570
|
2020 |
+
},
|
2021 |
+
{
|
2022 |
+
"epoch": 1.38,
|
2023 |
+
"learning_rate": 1.1858114756795718e-05,
|
2024 |
+
"loss": 1.0739,
|
2025 |
+
"step": 1575
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 1.38,
|
2029 |
+
"learning_rate": 1.1811365445186213e-05,
|
2030 |
+
"loss": 1.073,
|
2031 |
+
"step": 1580
|
2032 |
+
},
|
2033 |
+
{
|
2034 |
+
"epoch": 1.39,
|
2035 |
+
"learning_rate": 1.1764575167170525e-05,
|
2036 |
+
"loss": 1.0548,
|
2037 |
+
"step": 1585
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 1.39,
|
2041 |
+
"learning_rate": 1.1717744980972178e-05,
|
2042 |
+
"loss": 1.0725,
|
2043 |
+
"step": 1590
|
2044 |
+
},
|
2045 |
+
{
|
2046 |
+
"epoch": 1.4,
|
2047 |
+
"learning_rate": 1.1670875945717282e-05,
|
2048 |
+
"loss": 1.0649,
|
2049 |
+
"step": 1595
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 1.4,
|
2053 |
+
"learning_rate": 1.1623969121410563e-05,
|
2054 |
+
"loss": 1.0652,
|
2055 |
+
"step": 1600
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"epoch": 1.4,
|
2059 |
+
"eval_loss": 1.1232975721359253,
|
2060 |
+
"eval_runtime": 426.1914,
|
2061 |
+
"eval_samples_per_second": 37.931,
|
2062 |
+
"eval_steps_per_second": 1.187,
|
2063 |
+
"step": 1600
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"epoch": 1.41,
|
2067 |
+
"learning_rate": 1.1577025568911395e-05,
|
2068 |
+
"loss": 1.0705,
|
2069 |
+
"step": 1605
|
2070 |
+
},
|
2071 |
+
{
|
2072 |
+
"epoch": 1.41,
|
2073 |
+
"learning_rate": 1.1530046349909816e-05,
|
2074 |
+
"loss": 1.0584,
|
2075 |
+
"step": 1610
|
2076 |
+
},
|
2077 |
+
{
|
2078 |
+
"epoch": 1.41,
|
2079 |
+
"learning_rate": 1.1483032526902502e-05,
|
2080 |
+
"loss": 1.0655,
|
2081 |
+
"step": 1615
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 1.42,
|
2085 |
+
"learning_rate": 1.1435985163168745e-05,
|
2086 |
+
"loss": 1.0515,
|
2087 |
+
"step": 1620
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"epoch": 1.42,
|
2091 |
+
"learning_rate": 1.1388905322746406e-05,
|
2092 |
+
"loss": 1.071,
|
2093 |
+
"step": 1625
|
2094 |
+
},
|
2095 |
+
{
|
2096 |
+
"epoch": 1.43,
|
2097 |
+
"learning_rate": 1.1341794070407847e-05,
|
2098 |
+
"loss": 1.064,
|
2099 |
+
"step": 1630
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"epoch": 1.43,
|
2103 |
+
"learning_rate": 1.1294652471635857e-05,
|
2104 |
+
"loss": 1.0576,
|
2105 |
+
"step": 1635
|
2106 |
+
},
|
2107 |
+
{
|
2108 |
+
"epoch": 1.44,
|
2109 |
+
"learning_rate": 1.124748159259954e-05,
|
2110 |
+
"loss": 1.0586,
|
2111 |
+
"step": 1640
|
2112 |
+
},
|
2113 |
+
{
|
2114 |
+
"epoch": 1.44,
|
2115 |
+
"learning_rate": 1.1200282500130222e-05,
|
2116 |
+
"loss": 1.0596,
|
2117 |
+
"step": 1645
|
2118 |
+
},
|
2119 |
+
{
|
2120 |
+
"epoch": 1.45,
|
2121 |
+
"learning_rate": 1.1153056261697303e-05,
|
2122 |
+
"loss": 1.0633,
|
2123 |
+
"step": 1650
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 1.45,
|
2127 |
+
"learning_rate": 1.1105803945384134e-05,
|
2128 |
+
"loss": 1.0529,
|
2129 |
+
"step": 1655
|
2130 |
+
},
|
2131 |
+
{
|
2132 |
+
"epoch": 1.45,
|
2133 |
+
"learning_rate": 1.1058526619863846e-05,
|
2134 |
+
"loss": 1.0574,
|
2135 |
+
"step": 1660
|
2136 |
+
},
|
2137 |
+
{
|
2138 |
+
"epoch": 1.46,
|
2139 |
+
"learning_rate": 1.1011225354375184e-05,
|
2140 |
+
"loss": 1.0768,
|
2141 |
+
"step": 1665
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"epoch": 1.46,
|
2145 |
+
"learning_rate": 1.0963901218698331e-05,
|
2146 |
+
"loss": 1.061,
|
2147 |
+
"step": 1670
|
2148 |
+
},
|
2149 |
+
{
|
2150 |
+
"epoch": 1.47,
|
2151 |
+
"learning_rate": 1.0916555283130714e-05,
|
2152 |
+
"loss": 1.0585,
|
2153 |
+
"step": 1675
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"epoch": 1.47,
|
2157 |
+
"learning_rate": 1.0869188618462778e-05,
|
2158 |
+
"loss": 1.0675,
|
2159 |
+
"step": 1680
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 1.48,
|
2163 |
+
"learning_rate": 1.0821802295953795e-05,
|
2164 |
+
"loss": 1.0437,
|
2165 |
+
"step": 1685
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 1.48,
|
2169 |
+
"learning_rate": 1.0774397387307628e-05,
|
2170 |
+
"loss": 1.059,
|
2171 |
+
"step": 1690
|
2172 |
+
},
|
2173 |
+
{
|
2174 |
+
"epoch": 1.48,
|
2175 |
+
"learning_rate": 1.0726974964648478e-05,
|
2176 |
+
"loss": 1.047,
|
2177 |
+
"step": 1695
|
2178 |
+
},
|
2179 |
+
{
|
2180 |
+
"epoch": 1.49,
|
2181 |
+
"learning_rate": 1.0679536100496661e-05,
|
2182 |
+
"loss": 1.0626,
|
2183 |
+
"step": 1700
|
2184 |
+
},
|
2185 |
+
{
|
2186 |
+
"epoch": 1.49,
|
2187 |
+
"eval_loss": 1.1213114261627197,
|
2188 |
+
"eval_runtime": 426.3267,
|
2189 |
+
"eval_samples_per_second": 37.919,
|
2190 |
+
"eval_steps_per_second": 1.187,
|
2191 |
+
"step": 1700
|
2192 |
+
},
|
2193 |
+
{
|
2194 |
+
"epoch": 1.49,
|
2195 |
+
"learning_rate": 1.063208186774433e-05,
|
2196 |
+
"loss": 1.0578,
|
2197 |
+
"step": 1705
|
2198 |
+
},
|
2199 |
+
{
|
2200 |
+
"epoch": 1.5,
|
2201 |
+
"learning_rate": 1.0584613339631222e-05,
|
2202 |
+
"loss": 1.0652,
|
2203 |
+
"step": 1710
|
2204 |
+
},
|
2205 |
+
{
|
2206 |
+
"epoch": 1.5,
|
2207 |
+
"learning_rate": 1.0537131589720387e-05,
|
2208 |
+
"loss": 1.0497,
|
2209 |
+
"step": 1715
|
2210 |
+
},
|
2211 |
+
{
|
2212 |
+
"epoch": 1.51,
|
2213 |
+
"learning_rate": 1.0489637691873889e-05,
|
2214 |
+
"loss": 1.0764,
|
2215 |
+
"step": 1720
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 1.51,
|
2219 |
+
"learning_rate": 1.0442132720228551e-05,
|
2220 |
+
"loss": 1.071,
|
2221 |
+
"step": 1725
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 1.52,
|
2225 |
+
"learning_rate": 1.0394617749171636e-05,
|
2226 |
+
"loss": 1.0666,
|
2227 |
+
"step": 1730
|
2228 |
+
},
|
2229 |
+
{
|
2230 |
+
"epoch": 1.52,
|
2231 |
+
"learning_rate": 1.0347093853316555e-05,
|
2232 |
+
"loss": 1.0495,
|
2233 |
+
"step": 1735
|
2234 |
+
},
|
2235 |
+
{
|
2236 |
+
"epoch": 1.52,
|
2237 |
+
"learning_rate": 1.0299562107478569e-05,
|
2238 |
+
"loss": 1.0489,
|
2239 |
+
"step": 1740
|
2240 |
+
},
|
2241 |
+
{
|
2242 |
+
"epoch": 1.53,
|
2243 |
+
"learning_rate": 1.0252023586650476e-05,
|
2244 |
+
"loss": 1.0737,
|
2245 |
+
"step": 1745
|
2246 |
+
},
|
2247 |
+
{
|
2248 |
+
"epoch": 1.53,
|
2249 |
+
"learning_rate": 1.0204479365978298e-05,
|
2250 |
+
"loss": 1.045,
|
2251 |
+
"step": 1750
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"epoch": 1.54,
|
2255 |
+
"learning_rate": 1.0156930520736965e-05,
|
2256 |
+
"loss": 1.0637,
|
2257 |
+
"step": 1755
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 1.54,
|
2261 |
+
"learning_rate": 1.0109378126306002e-05,
|
2262 |
+
"loss": 1.0737,
|
2263 |
+
"step": 1760
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 1.55,
|
2267 |
+
"learning_rate": 1.00618232581452e-05,
|
2268 |
+
"loss": 1.0626,
|
2269 |
+
"step": 1765
|
2270 |
+
},
|
2271 |
+
{
|
2272 |
+
"epoch": 1.55,
|
2273 |
+
"learning_rate": 1.0014266991770299e-05,
|
2274 |
+
"loss": 1.0483,
|
2275 |
+
"step": 1770
|
2276 |
+
},
|
2277 |
+
{
|
2278 |
+
"epoch": 1.55,
|
2279 |
+
"learning_rate": 9.966710402728658e-06,
|
2280 |
+
"loss": 1.0653,
|
2281 |
+
"step": 1775
|
2282 |
+
},
|
2283 |
+
{
|
2284 |
+
"epoch": 1.56,
|
2285 |
+
"learning_rate": 9.919154566574942e-06,
|
2286 |
+
"loss": 1.07,
|
2287 |
+
"step": 1780
|
2288 |
+
},
|
2289 |
+
{
|
2290 |
+
"epoch": 1.56,
|
2291 |
+
"learning_rate": 9.871600558846772e-06,
|
2292 |
+
"loss": 1.0668,
|
2293 |
+
"step": 1785
|
2294 |
+
},
|
2295 |
+
{
|
2296 |
+
"epoch": 1.57,
|
2297 |
+
"learning_rate": 9.82404945504044e-06,
|
2298 |
+
"loss": 1.0525,
|
2299 |
+
"step": 1790
|
2300 |
+
},
|
2301 |
+
{
|
2302 |
+
"epoch": 1.57,
|
2303 |
+
"learning_rate": 9.776502330586535e-06,
|
2304 |
+
"loss": 1.0578,
|
2305 |
+
"step": 1795
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 1.58,
|
2309 |
+
"learning_rate": 9.728960260825675e-06,
|
2310 |
+
"loss": 1.0457,
|
2311 |
+
"step": 1800
|
2312 |
+
},
|
2313 |
+
{
|
2314 |
+
"epoch": 1.58,
|
2315 |
+
"eval_loss": 1.1195377111434937,
|
2316 |
+
"eval_runtime": 425.5901,
|
2317 |
+
"eval_samples_per_second": 37.985,
|
2318 |
+
"eval_steps_per_second": 1.189,
|
2319 |
+
"step": 1800
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 1.58,
|
2323 |
+
"learning_rate": 9.681424320984136e-06,
|
2324 |
+
"loss": 1.0608,
|
2325 |
+
"step": 1805
|
2326 |
+
},
|
2327 |
+
{
|
2328 |
+
"epoch": 1.59,
|
2329 |
+
"learning_rate": 9.633895586149575e-06,
|
2330 |
+
"loss": 1.042,
|
2331 |
+
"step": 1810
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 1.59,
|
2335 |
+
"learning_rate": 9.586375131246688e-06,
|
2336 |
+
"loss": 1.0456,
|
2337 |
+
"step": 1815
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"epoch": 1.59,
|
2341 |
+
"learning_rate": 9.538864031012913e-06,
|
2342 |
+
"loss": 1.0777,
|
2343 |
+
"step": 1820
|
2344 |
+
},
|
2345 |
+
{
|
2346 |
+
"epoch": 1.6,
|
2347 |
+
"learning_rate": 9.491363359974121e-06,
|
2348 |
+
"loss": 1.0497,
|
2349 |
+
"step": 1825
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"epoch": 1.6,
|
2353 |
+
"learning_rate": 9.443874192420312e-06,
|
2354 |
+
"loss": 1.0441,
|
2355 |
+
"step": 1830
|
2356 |
+
},
|
2357 |
+
{
|
2358 |
+
"epoch": 1.61,
|
2359 |
+
"learning_rate": 9.396397602381318e-06,
|
2360 |
+
"loss": 1.0767,
|
2361 |
+
"step": 1835
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 1.61,
|
2365 |
+
"learning_rate": 9.34893466360252e-06,
|
2366 |
+
"loss": 1.0545,
|
2367 |
+
"step": 1840
|
2368 |
+
},
|
2369 |
+
{
|
2370 |
+
"epoch": 1.62,
|
2371 |
+
"learning_rate": 9.301486449520543e-06,
|
2372 |
+
"loss": 1.0691,
|
2373 |
+
"step": 1845
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 1.62,
|
2377 |
+
"learning_rate": 9.254054033239017e-06,
|
2378 |
+
"loss": 1.0398,
|
2379 |
+
"step": 1850
|
2380 |
+
},
|
2381 |
+
{
|
2382 |
+
"epoch": 1.63,
|
2383 |
+
"learning_rate": 9.206638487504265e-06,
|
2384 |
+
"loss": 1.0498,
|
2385 |
+
"step": 1855
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 1.63,
|
2389 |
+
"learning_rate": 9.15924088468106e-06,
|
2390 |
+
"loss": 1.0486,
|
2391 |
+
"step": 1860
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"epoch": 1.63,
|
2395 |
+
"learning_rate": 9.11186229672839e-06,
|
2396 |
+
"loss": 1.0574,
|
2397 |
+
"step": 1865
|
2398 |
+
},
|
2399 |
+
{
|
2400 |
+
"epoch": 1.64,
|
2401 |
+
"learning_rate": 9.064503795175175e-06,
|
2402 |
+
"loss": 1.06,
|
2403 |
+
"step": 1870
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 1.64,
|
2407 |
+
"learning_rate": 9.017166451096077e-06,
|
2408 |
+
"loss": 1.0461,
|
2409 |
+
"step": 1875
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 1.65,
|
2413 |
+
"learning_rate": 8.969851335087233e-06,
|
2414 |
+
"loss": 1.0605,
|
2415 |
+
"step": 1880
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 1.65,
|
2419 |
+
"learning_rate": 8.922559517242078e-06,
|
2420 |
+
"loss": 1.0398,
|
2421 |
+
"step": 1885
|
2422 |
+
},
|
2423 |
+
{
|
2424 |
+
"epoch": 1.66,
|
2425 |
+
"learning_rate": 8.87529206712712e-06,
|
2426 |
+
"loss": 1.0581,
|
2427 |
+
"step": 1890
|
2428 |
+
},
|
2429 |
+
{
|
2430 |
+
"epoch": 1.66,
|
2431 |
+
"learning_rate": 8.828050053757764e-06,
|
2432 |
+
"loss": 1.0431,
|
2433 |
+
"step": 1895
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"epoch": 1.66,
|
2437 |
+
"learning_rate": 8.780834545574122e-06,
|
2438 |
+
"loss": 1.0665,
|
2439 |
+
"step": 1900
|
2440 |
+
},
|
2441 |
+
{
|
2442 |
+
"epoch": 1.66,
|
2443 |
+
"eval_loss": 1.1177818775177002,
|
2444 |
+
"eval_runtime": 425.4649,
|
2445 |
+
"eval_samples_per_second": 37.996,
|
2446 |
+
"eval_steps_per_second": 1.189,
|
2447 |
+
"step": 1900
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"epoch": 1.67,
|
2451 |
+
"learning_rate": 8.73364661041687e-06,
|
2452 |
+
"loss": 1.0675,
|
2453 |
+
"step": 1905
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"epoch": 1.67,
|
2457 |
+
"learning_rate": 8.686487315503066e-06,
|
2458 |
+
"loss": 1.0327,
|
2459 |
+
"step": 1910
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 1.68,
|
2463 |
+
"learning_rate": 8.63935772740205e-06,
|
2464 |
+
"loss": 1.0395,
|
2465 |
+
"step": 1915
|
2466 |
+
},
|
2467 |
+
{
|
2468 |
+
"epoch": 1.68,
|
2469 |
+
"learning_rate": 8.59225891201129e-06,
|
2470 |
+
"loss": 1.0442,
|
2471 |
+
"step": 1920
|
2472 |
+
},
|
2473 |
+
{
|
2474 |
+
"epoch": 1.69,
|
2475 |
+
"learning_rate": 8.545191934532294e-06,
|
2476 |
+
"loss": 1.0605,
|
2477 |
+
"step": 1925
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"epoch": 1.69,
|
2481 |
+
"learning_rate": 8.498157859446512e-06,
|
2482 |
+
"loss": 1.0384,
|
2483 |
+
"step": 1930
|
2484 |
+
},
|
2485 |
+
{
|
2486 |
+
"epoch": 1.7,
|
2487 |
+
"learning_rate": 8.451157750491265e-06,
|
2488 |
+
"loss": 1.0631,
|
2489 |
+
"step": 1935
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"epoch": 1.7,
|
2493 |
+
"learning_rate": 8.404192670635683e-06,
|
2494 |
+
"loss": 1.0804,
|
2495 |
+
"step": 1940
|
2496 |
+
},
|
2497 |
+
{
|
2498 |
+
"epoch": 1.7,
|
2499 |
+
"learning_rate": 8.35726368205667e-06,
|
2500 |
+
"loss": 1.0556,
|
2501 |
+
"step": 1945
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 1.71,
|
2505 |
+
"learning_rate": 8.310371846114875e-06,
|
2506 |
+
"loss": 1.0428,
|
2507 |
+
"step": 1950
|
2508 |
+
},
|
2509 |
+
{
|
2510 |
+
"epoch": 1.71,
|
2511 |
+
"learning_rate": 8.263518223330698e-06,
|
2512 |
+
"loss": 1.0596,
|
2513 |
+
"step": 1955
|
2514 |
+
},
|
2515 |
+
{
|
2516 |
+
"epoch": 1.72,
|
2517 |
+
"learning_rate": 8.216703873360292e-06,
|
2518 |
+
"loss": 1.0443,
|
2519 |
+
"step": 1960
|
2520 |
+
},
|
2521 |
+
{
|
2522 |
+
"epoch": 1.72,
|
2523 |
+
"learning_rate": 8.169929854971598e-06,
|
2524 |
+
"loss": 1.0637,
|
2525 |
+
"step": 1965
|
2526 |
+
},
|
2527 |
+
{
|
2528 |
+
"epoch": 1.73,
|
2529 |
+
"learning_rate": 8.123197226020426e-06,
|
2530 |
+
"loss": 1.0336,
|
2531 |
+
"step": 1970
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"epoch": 1.73,
|
2535 |
+
"learning_rate": 8.076507043426482e-06,
|
2536 |
+
"loss": 1.0734,
|
2537 |
+
"step": 1975
|
2538 |
+
},
|
2539 |
+
{
|
2540 |
+
"epoch": 1.73,
|
2541 |
+
"learning_rate": 8.02986036314952e-06,
|
2542 |
+
"loss": 1.0465,
|
2543 |
+
"step": 1980
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 1.74,
|
2547 |
+
"learning_rate": 7.983258240165406e-06,
|
2548 |
+
"loss": 1.0622,
|
2549 |
+
"step": 1985
|
2550 |
+
},
|
2551 |
+
{
|
2552 |
+
"epoch": 1.74,
|
2553 |
+
"learning_rate": 7.936701728442308e-06,
|
2554 |
+
"loss": 1.0638,
|
2555 |
+
"step": 1990
|
2556 |
+
},
|
2557 |
+
{
|
2558 |
+
"epoch": 1.75,
|
2559 |
+
"learning_rate": 7.890191880916813e-06,
|
2560 |
+
"loss": 1.0572,
|
2561 |
+
"step": 1995
|
2562 |
+
},
|
2563 |
+
{
|
2564 |
+
"epoch": 1.75,
|
2565 |
+
"learning_rate": 7.84372974947016e-06,
|
2566 |
+
"loss": 1.07,
|
2567 |
+
"step": 2000
|
2568 |
+
},
|
2569 |
+
{
|
2570 |
+
"epoch": 1.75,
|
2571 |
+
"eval_loss": 1.1158109903335571,
|
2572 |
+
"eval_runtime": 425.626,
|
2573 |
+
"eval_samples_per_second": 37.982,
|
2574 |
+
"eval_steps_per_second": 1.189,
|
2575 |
+
"step": 2000
|
2576 |
+
},
|
2577 |
+
{
|
2578 |
+
"epoch": 1.76,
|
2579 |
+
"learning_rate": 7.797316384904402e-06,
|
2580 |
+
"loss": 1.0536,
|
2581 |
+
"step": 2005
|
2582 |
+
},
|
2583 |
+
{
|
2584 |
+
"epoch": 1.76,
|
2585 |
+
"learning_rate": 7.750952836918679e-06,
|
2586 |
+
"loss": 1.0543,
|
2587 |
+
"step": 2010
|
2588 |
+
},
|
2589 |
+
{
|
2590 |
+
"epoch": 1.77,
|
2591 |
+
"learning_rate": 7.704640154085466e-06,
|
2592 |
+
"loss": 1.06,
|
2593 |
+
"step": 2015
|
2594 |
+
},
|
2595 |
+
{
|
2596 |
+
"epoch": 1.77,
|
2597 |
+
"learning_rate": 7.658379383826841e-06,
|
2598 |
+
"loss": 1.0623,
|
2599 |
+
"step": 2020
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 1.77,
|
2603 |
+
"learning_rate": 7.612171572390834e-06,
|
2604 |
+
"loss": 1.0611,
|
2605 |
+
"step": 2025
|
2606 |
+
},
|
2607 |
+
{
|
2608 |
+
"epoch": 1.78,
|
2609 |
+
"learning_rate": 7.566017764827717e-06,
|
2610 |
+
"loss": 1.0635,
|
2611 |
+
"step": 2030
|
2612 |
+
},
|
2613 |
+
{
|
2614 |
+
"epoch": 1.78,
|
2615 |
+
"learning_rate": 7.519919004966414e-06,
|
2616 |
+
"loss": 1.0583,
|
2617 |
+
"step": 2035
|
2618 |
+
},
|
2619 |
+
{
|
2620 |
+
"epoch": 1.79,
|
2621 |
+
"learning_rate": 7.473876335390857e-06,
|
2622 |
+
"loss": 1.0371,
|
2623 |
+
"step": 2040
|
2624 |
+
},
|
2625 |
+
{
|
2626 |
+
"epoch": 1.79,
|
2627 |
+
"learning_rate": 7.427890797416435e-06,
|
2628 |
+
"loss": 1.0538,
|
2629 |
+
"step": 2045
|
2630 |
+
},
|
2631 |
+
{
|
2632 |
+
"epoch": 1.8,
|
2633 |
+
"learning_rate": 7.3819634310664224e-06,
|
2634 |
+
"loss": 1.0404,
|
2635 |
+
"step": 2050
|
2636 |
+
},
|
2637 |
+
{
|
2638 |
+
"epoch": 1.8,
|
2639 |
+
"learning_rate": 7.336095275048474e-06,
|
2640 |
+
"loss": 1.0607,
|
2641 |
+
"step": 2055
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 1.8,
|
2645 |
+
"learning_rate": 7.29028736673111e-06,
|
2646 |
+
"loss": 1.0592,
|
2647 |
+
"step": 2060
|
2648 |
+
},
|
2649 |
+
{
|
2650 |
+
"epoch": 1.81,
|
2651 |
+
"learning_rate": 7.244540742120294e-06,
|
2652 |
+
"loss": 1.0323,
|
2653 |
+
"step": 2065
|
2654 |
+
},
|
2655 |
+
{
|
2656 |
+
"epoch": 1.81,
|
2657 |
+
"learning_rate": 7.1988564358359566e-06,
|
2658 |
+
"loss": 1.0516,
|
2659 |
+
"step": 2070
|
2660 |
+
},
|
2661 |
+
{
|
2662 |
+
"epoch": 1.82,
|
2663 |
+
"learning_rate": 7.153235481088624e-06,
|
2664 |
+
"loss": 1.0695,
|
2665 |
+
"step": 2075
|
2666 |
+
},
|
2667 |
+
{
|
2668 |
+
"epoch": 1.82,
|
2669 |
+
"learning_rate": 7.107678909656052e-06,
|
2670 |
+
"loss": 1.0659,
|
2671 |
+
"step": 2080
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"epoch": 1.83,
|
2675 |
+
"learning_rate": 7.062187751859868e-06,
|
2676 |
+
"loss": 1.0667,
|
2677 |
+
"step": 2085
|
2678 |
+
},
|
2679 |
+
{
|
2680 |
+
"epoch": 1.83,
|
2681 |
+
"learning_rate": 7.016763036542305e-06,
|
2682 |
+
"loss": 1.0574,
|
2683 |
+
"step": 2090
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 1.84,
|
2687 |
+
"learning_rate": 6.971405791042889e-06,
|
2688 |
+
"loss": 1.0494,
|
2689 |
+
"step": 2095
|
2690 |
+
},
|
2691 |
+
{
|
2692 |
+
"epoch": 1.84,
|
2693 |
+
"learning_rate": 6.92611704117525e-06,
|
2694 |
+
"loss": 1.0567,
|
2695 |
+
"step": 2100
|
2696 |
+
},
|
2697 |
+
{
|
2698 |
+
"epoch": 1.84,
|
2699 |
+
"eval_loss": 1.114147663116455,
|
2700 |
+
"eval_runtime": 424.5226,
|
2701 |
+
"eval_samples_per_second": 38.08,
|
2702 |
+
"eval_steps_per_second": 1.192,
|
2703 |
+
"step": 2100
|
2704 |
+
},
|
2705 |
+
{
|
2706 |
+
"epoch": 1.84,
|
2707 |
+
"learning_rate": 6.880897811203877e-06,
|
2708 |
+
"loss": 1.0624,
|
2709 |
+
"step": 2105
|
2710 |
+
},
|
2711 |
+
{
|
2712 |
+
"epoch": 1.85,
|
2713 |
+
"learning_rate": 6.835749123820997e-06,
|
2714 |
+
"loss": 1.048,
|
2715 |
+
"step": 2110
|
2716 |
+
},
|
2717 |
+
{
|
2718 |
+
"epoch": 1.85,
|
2719 |
+
"learning_rate": 6.790672000123405e-06,
|
2720 |
+
"loss": 1.0783,
|
2721 |
+
"step": 2115
|
2722 |
+
},
|
2723 |
+
{
|
2724 |
+
"epoch": 1.86,
|
2725 |
+
"learning_rate": 6.7456674595894065e-06,
|
2726 |
+
"loss": 1.0464,
|
2727 |
+
"step": 2120
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"epoch": 1.86,
|
2731 |
+
"learning_rate": 6.700736520055725e-06,
|
2732 |
+
"loss": 1.0437,
|
2733 |
+
"step": 2125
|
2734 |
+
},
|
2735 |
+
{
|
2736 |
+
"epoch": 1.87,
|
2737 |
+
"learning_rate": 6.6558801976945206e-06,
|
2738 |
+
"loss": 1.0552,
|
2739 |
+
"step": 2130
|
2740 |
+
},
|
2741 |
+
{
|
2742 |
+
"epoch": 1.87,
|
2743 |
+
"learning_rate": 6.611099506990372e-06,
|
2744 |
+
"loss": 1.0622,
|
2745 |
+
"step": 2135
|
2746 |
+
},
|
2747 |
+
{
|
2748 |
+
"epoch": 1.87,
|
2749 |
+
"learning_rate": 6.566395460717356e-06,
|
2750 |
+
"loss": 1.0519,
|
2751 |
+
"step": 2140
|
2752 |
+
},
|
2753 |
+
{
|
2754 |
+
"epoch": 1.88,
|
2755 |
+
"learning_rate": 6.521769069916136e-06,
|
2756 |
+
"loss": 1.0433,
|
2757 |
+
"step": 2145
|
2758 |
+
},
|
2759 |
+
{
|
2760 |
+
"epoch": 1.88,
|
2761 |
+
"learning_rate": 6.477221343871088e-06,
|
2762 |
+
"loss": 1.0578,
|
2763 |
+
"step": 2150
|
2764 |
+
},
|
2765 |
+
{
|
2766 |
+
"epoch": 1.89,
|
2767 |
+
"learning_rate": 6.4327532900874945e-06,
|
2768 |
+
"loss": 1.0628,
|
2769 |
+
"step": 2155
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"epoch": 1.89,
|
2773 |
+
"learning_rate": 6.38836591426873e-06,
|
2774 |
+
"loss": 1.0376,
|
2775 |
+
"step": 2160
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 1.9,
|
2779 |
+
"learning_rate": 6.344060220293542e-06,
|
2780 |
+
"loss": 1.056,
|
2781 |
+
"step": 2165
|
2782 |
+
},
|
2783 |
+
{
|
2784 |
+
"epoch": 1.9,
|
2785 |
+
"learning_rate": 6.299837210193331e-06,
|
2786 |
+
"loss": 1.0485,
|
2787 |
+
"step": 2170
|
2788 |
+
},
|
2789 |
+
{
|
2790 |
+
"epoch": 1.91,
|
2791 |
+
"learning_rate": 6.255697884129495e-06,
|
2792 |
+
"loss": 1.073,
|
2793 |
+
"step": 2175
|
2794 |
+
},
|
2795 |
+
{
|
2796 |
+
"epoch": 1.91,
|
2797 |
+
"learning_rate": 6.2116432403708015e-06,
|
2798 |
+
"loss": 1.0604,
|
2799 |
+
"step": 2180
|
2800 |
+
},
|
2801 |
+
{
|
2802 |
+
"epoch": 1.91,
|
2803 |
+
"learning_rate": 6.167674275270832e-06,
|
2804 |
+
"loss": 1.0579,
|
2805 |
+
"step": 2185
|
2806 |
+
},
|
2807 |
+
{
|
2808 |
+
"epoch": 1.92,
|
2809 |
+
"learning_rate": 6.123791983245411e-06,
|
2810 |
+
"loss": 1.0493,
|
2811 |
+
"step": 2190
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"epoch": 1.92,
|
2815 |
+
"learning_rate": 6.0799973567501616e-06,
|
2816 |
+
"loss": 1.0583,
|
2817 |
+
"step": 2195
|
2818 |
+
},
|
2819 |
+
{
|
2820 |
+
"epoch": 1.93,
|
2821 |
+
"learning_rate": 6.036291386258013e-06,
|
2822 |
+
"loss": 1.0304,
|
2823 |
+
"step": 2200
|
2824 |
+
},
|
2825 |
+
{
|
2826 |
+
"epoch": 1.93,
|
2827 |
+
"eval_loss": 1.1127439737319946,
|
2828 |
+
"eval_runtime": 425.0783,
|
2829 |
+
"eval_samples_per_second": 38.031,
|
2830 |
+
"eval_steps_per_second": 1.19,
|
2831 |
+
"step": 2200
|
2832 |
+
},
|
2833 |
+
{
|
2834 |
+
"epoch": 1.93,
|
2835 |
+
"learning_rate": 5.992675060236841e-06,
|
2836 |
+
"loss": 1.0728,
|
2837 |
+
"step": 2205
|
2838 |
+
},
|
2839 |
+
{
|
2840 |
+
"epoch": 1.94,
|
2841 |
+
"learning_rate": 5.94914936512708e-06,
|
2842 |
+
"loss": 1.0472,
|
2843 |
+
"step": 2210
|
2844 |
+
},
|
2845 |
+
{
|
2846 |
+
"epoch": 1.94,
|
2847 |
+
"learning_rate": 5.905715285319442e-06,
|
2848 |
+
"loss": 1.0555,
|
2849 |
+
"step": 2215
|
2850 |
+
},
|
2851 |
+
{
|
2852 |
+
"epoch": 1.94,
|
2853 |
+
"learning_rate": 5.862373803132625e-06,
|
2854 |
+
"loss": 1.067,
|
2855 |
+
"step": 2220
|
2856 |
+
},
|
2857 |
+
{
|
2858 |
+
"epoch": 1.95,
|
2859 |
+
"learning_rate": 5.819125898791115e-06,
|
2860 |
+
"loss": 1.0504,
|
2861 |
+
"step": 2225
|
2862 |
+
},
|
2863 |
+
{
|
2864 |
+
"epoch": 1.95,
|
2865 |
+
"learning_rate": 5.775972550403015e-06,
|
2866 |
+
"loss": 1.0541,
|
2867 |
+
"step": 2230
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"epoch": 1.96,
|
2871 |
+
"learning_rate": 5.732914733937917e-06,
|
2872 |
+
"loss": 1.0508,
|
2873 |
+
"step": 2235
|
2874 |
+
},
|
2875 |
+
{
|
2876 |
+
"epoch": 1.96,
|
2877 |
+
"learning_rate": 5.6899534232048395e-06,
|
2878 |
+
"loss": 1.0763,
|
2879 |
+
"step": 2240
|
2880 |
+
},
|
2881 |
+
{
|
2882 |
+
"epoch": 1.97,
|
2883 |
+
"learning_rate": 5.647089589830186e-06,
|
2884 |
+
"loss": 1.0592,
|
2885 |
+
"step": 2245
|
2886 |
+
},
|
2887 |
+
{
|
2888 |
+
"epoch": 1.97,
|
2889 |
+
"learning_rate": 5.604324203235798e-06,
|
2890 |
+
"loss": 1.0535,
|
2891 |
+
"step": 2250
|
2892 |
+
},
|
2893 |
+
{
|
2894 |
+
"epoch": 1.98,
|
2895 |
+
"learning_rate": 5.561658230616997e-06,
|
2896 |
+
"loss": 1.0667,
|
2897 |
+
"step": 2255
|
2898 |
+
},
|
2899 |
+
{
|
2900 |
+
"epoch": 1.98,
|
2901 |
+
"learning_rate": 5.519092636920741e-06,
|
2902 |
+
"loss": 1.05,
|
2903 |
+
"step": 2260
|
2904 |
+
},
|
2905 |
+
{
|
2906 |
+
"epoch": 1.98,
|
2907 |
+
"learning_rate": 5.476628384823773e-06,
|
2908 |
+
"loss": 1.0721,
|
2909 |
+
"step": 2265
|
2910 |
+
},
|
2911 |
+
{
|
2912 |
+
"epoch": 1.99,
|
2913 |
+
"learning_rate": 5.434266434710879e-06,
|
2914 |
+
"loss": 1.0546,
|
2915 |
+
"step": 2270
|
2916 |
+
},
|
2917 |
+
{
|
2918 |
+
"epoch": 1.99,
|
2919 |
+
"learning_rate": 5.392007744653134e-06,
|
2920 |
+
"loss": 1.0448,
|
2921 |
+
"step": 2275
|
2922 |
+
},
|
2923 |
+
{
|
2924 |
+
"epoch": 2.0,
|
2925 |
+
"learning_rate": 5.3498532703862685e-06,
|
2926 |
+
"loss": 1.0486,
|
2927 |
+
"step": 2280
|
2928 |
+
},
|
2929 |
+
{
|
2930 |
+
"epoch": 2.0,
|
2931 |
+
"learning_rate": 5.307803965289023e-06,
|
2932 |
+
"loss": 1.036,
|
2933 |
+
"step": 2285
|
2934 |
+
},
|
2935 |
+
{
|
2936 |
+
"epoch": 2.01,
|
2937 |
+
"learning_rate": 5.265860780361602e-06,
|
2938 |
+
"loss": 0.9944,
|
2939 |
+
"step": 2290
|
2940 |
+
},
|
2941 |
+
{
|
2942 |
+
"epoch": 2.01,
|
2943 |
+
"learning_rate": 5.2240246642041705e-06,
|
2944 |
+
"loss": 0.9918,
|
2945 |
+
"step": 2295
|
2946 |
+
},
|
2947 |
+
{
|
2948 |
+
"epoch": 2.01,
|
2949 |
+
"learning_rate": 5.182296562995383e-06,
|
2950 |
+
"loss": 1.0132,
|
2951 |
+
"step": 2300
|
2952 |
+
},
|
2953 |
+
{
|
2954 |
+
"epoch": 2.01,
|
2955 |
+
"eval_loss": 1.1170079708099365,
|
2956 |
+
"eval_runtime": 424.7277,
|
2957 |
+
"eval_samples_per_second": 38.062,
|
2958 |
+
"eval_steps_per_second": 1.191,
|
2959 |
+
"step": 2300
|
2960 |
+
},
|
2961 |
+
{
|
2962 |
+
"epoch": 2.02,
|
2963 |
+
"learning_rate": 5.140677420471003e-06,
|
2964 |
+
"loss": 1.0045,
|
2965 |
+
"step": 2305
|
2966 |
+
},
|
2967 |
+
{
|
2968 |
+
"epoch": 2.02,
|
2969 |
+
"learning_rate": 5.099168177902539e-06,
|
2970 |
+
"loss": 1.0096,
|
2971 |
+
"step": 2310
|
2972 |
+
},
|
2973 |
+
{
|
2974 |
+
"epoch": 2.03,
|
2975 |
+
"learning_rate": 5.057769774075985e-06,
|
2976 |
+
"loss": 1.0135,
|
2977 |
+
"step": 2315
|
2978 |
+
},
|
2979 |
+
{
|
2980 |
+
"epoch": 2.03,
|
2981 |
+
"learning_rate": 5.0164831452705494e-06,
|
2982 |
+
"loss": 1.015,
|
2983 |
+
"step": 2320
|
2984 |
+
},
|
2985 |
+
{
|
2986 |
+
"epoch": 2.04,
|
2987 |
+
"learning_rate": 4.9753092252375245e-06,
|
2988 |
+
"loss": 1.008,
|
2989 |
+
"step": 2325
|
2990 |
+
},
|
2991 |
+
{
|
2992 |
+
"epoch": 2.04,
|
2993 |
+
"learning_rate": 4.934248945179127e-06,
|
2994 |
+
"loss": 1.0101,
|
2995 |
+
"step": 2330
|
2996 |
+
},
|
2997 |
+
{
|
2998 |
+
"epoch": 2.05,
|
2999 |
+
"learning_rate": 4.893303233727472e-06,
|
3000 |
+
"loss": 1.0,
|
3001 |
+
"step": 2335
|
3002 |
+
},
|
3003 |
+
{
|
3004 |
+
"epoch": 2.05,
|
3005 |
+
"learning_rate": 4.8524730169235404e-06,
|
3006 |
+
"loss": 1.0187,
|
3007 |
+
"step": 2340
|
3008 |
+
},
|
3009 |
+
{
|
3010 |
+
"epoch": 2.05,
|
3011 |
+
"learning_rate": 4.811759218196262e-06,
|
3012 |
+
"loss": 1.009,
|
3013 |
+
"step": 2345
|
3014 |
+
},
|
3015 |
+
{
|
3016 |
+
"epoch": 2.06,
|
3017 |
+
"learning_rate": 4.771162758341612e-06,
|
3018 |
+
"loss": 1.0071,
|
3019 |
+
"step": 2350
|
3020 |
+
},
|
3021 |
+
{
|
3022 |
+
"epoch": 2.06,
|
3023 |
+
"learning_rate": 4.730684555501799e-06,
|
3024 |
+
"loss": 1.0141,
|
3025 |
+
"step": 2355
|
3026 |
+
},
|
3027 |
+
{
|
3028 |
+
"epoch": 2.07,
|
3029 |
+
"learning_rate": 4.690325525144488e-06,
|
3030 |
+
"loss": 1.0091,
|
3031 |
+
"step": 2360
|
3032 |
+
},
|
3033 |
+
{
|
3034 |
+
"epoch": 2.07,
|
3035 |
+
"learning_rate": 4.6500865800421015e-06,
|
3036 |
+
"loss": 1.0098,
|
3037 |
+
"step": 2365
|
3038 |
+
},
|
3039 |
+
{
|
3040 |
+
"epoch": 2.08,
|
3041 |
+
"learning_rate": 4.609968630251187e-06,
|
3042 |
+
"loss": 1.0056,
|
3043 |
+
"step": 2370
|
3044 |
+
},
|
3045 |
+
{
|
3046 |
+
"epoch": 2.08,
|
3047 |
+
"learning_rate": 4.569972583091807e-06,
|
3048 |
+
"loss": 0.9974,
|
3049 |
+
"step": 2375
|
3050 |
+
},
|
3051 |
+
{
|
3052 |
+
"epoch": 2.08,
|
3053 |
+
"learning_rate": 4.5300993431270565e-06,
|
3054 |
+
"loss": 1.0151,
|
3055 |
+
"step": 2380
|
3056 |
+
},
|
3057 |
+
{
|
3058 |
+
"epoch": 2.09,
|
3059 |
+
"learning_rate": 4.490349812142564e-06,
|
3060 |
+
"loss": 1.0208,
|
3061 |
+
"step": 2385
|
3062 |
+
},
|
3063 |
+
{
|
3064 |
+
"epoch": 2.09,
|
3065 |
+
"learning_rate": 4.450724889126135e-06,
|
3066 |
+
"loss": 1.0104,
|
3067 |
+
"step": 2390
|
3068 |
+
},
|
3069 |
+
{
|
3070 |
+
"epoch": 2.1,
|
3071 |
+
"learning_rate": 4.411225470247387e-06,
|
3072 |
+
"loss": 0.9955,
|
3073 |
+
"step": 2395
|
3074 |
+
},
|
3075 |
+
{
|
3076 |
+
"epoch": 2.1,
|
3077 |
+
"learning_rate": 4.371852448837511e-06,
|
3078 |
+
"loss": 1.0203,
|
3079 |
+
"step": 2400
|
3080 |
+
},
|
3081 |
+
{
|
3082 |
+
"epoch": 2.1,
|
3083 |
+
"eval_loss": 1.1169644594192505,
|
3084 |
+
"eval_runtime": 424.5951,
|
3085 |
+
"eval_samples_per_second": 38.074,
|
3086 |
+
"eval_steps_per_second": 1.192,
|
3087 |
+
"step": 2400
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 2.11,
|
3091 |
+
"learning_rate": 4.332606715369041e-06,
|
3092 |
+
"loss": 1.0023,
|
3093 |
+
"step": 2405
|
3094 |
+
},
|
3095 |
+
{
|
3096 |
+
"epoch": 2.11,
|
3097 |
+
"learning_rate": 4.2934891574357375e-06,
|
3098 |
+
"loss": 0.9944,
|
3099 |
+
"step": 2410
|
3100 |
+
},
|
3101 |
+
{
|
3102 |
+
"epoch": 2.12,
|
3103 |
+
"learning_rate": 4.254500659732496e-06,
|
3104 |
+
"loss": 1.015,
|
3105 |
+
"step": 2415
|
3106 |
+
},
|
3107 |
+
{
|
3108 |
+
"epoch": 2.12,
|
3109 |
+
"learning_rate": 4.2156421040353435e-06,
|
3110 |
+
"loss": 1.0193,
|
3111 |
+
"step": 2420
|
3112 |
+
},
|
3113 |
+
{
|
3114 |
+
"epoch": 2.12,
|
3115 |
+
"learning_rate": 4.1769143691815095e-06,
|
3116 |
+
"loss": 1.0124,
|
3117 |
+
"step": 2425
|
3118 |
+
},
|
3119 |
+
{
|
3120 |
+
"epoch": 2.13,
|
3121 |
+
"learning_rate": 4.138318331049525e-06,
|
3122 |
+
"loss": 1.0151,
|
3123 |
+
"step": 2430
|
3124 |
+
},
|
3125 |
+
{
|
3126 |
+
"epoch": 2.13,
|
3127 |
+
"learning_rate": 4.09985486253944e-06,
|
3128 |
+
"loss": 0.9957,
|
3129 |
+
"step": 2435
|
3130 |
+
},
|
3131 |
+
{
|
3132 |
+
"epoch": 2.14,
|
3133 |
+
"learning_rate": 4.061524833553058e-06,
|
3134 |
+
"loss": 1.0116,
|
3135 |
+
"step": 2440
|
3136 |
+
},
|
3137 |
+
{
|
3138 |
+
"epoch": 2.14,
|
3139 |
+
"learning_rate": 4.0233291109742726e-06,
|
3140 |
+
"loss": 1.0087,
|
3141 |
+
"step": 2445
|
3142 |
+
},
|
3143 |
+
{
|
3144 |
+
"epoch": 2.15,
|
3145 |
+
"learning_rate": 3.985268558649472e-06,
|
3146 |
+
"loss": 0.991,
|
3147 |
+
"step": 2450
|
3148 |
+
},
|
3149 |
+
{
|
3150 |
+
"epoch": 2.15,
|
3151 |
+
"learning_rate": 3.947344037367983e-06,
|
3152 |
+
"loss": 1.0072,
|
3153 |
+
"step": 2455
|
3154 |
+
},
|
3155 |
+
{
|
3156 |
+
"epoch": 2.16,
|
3157 |
+
"learning_rate": 3.909556404842609e-06,
|
3158 |
+
"loss": 0.9968,
|
3159 |
+
"step": 2460
|
3160 |
+
},
|
3161 |
+
{
|
3162 |
+
"epoch": 2.16,
|
3163 |
+
"learning_rate": 3.871906515690249e-06,
|
3164 |
+
"loss": 1.0264,
|
3165 |
+
"step": 2465
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 2.16,
|
3169 |
+
"learning_rate": 3.834395221412537e-06,
|
3170 |
+
"loss": 1.0041,
|
3171 |
+
"step": 2470
|
3172 |
+
},
|
3173 |
+
{
|
3174 |
+
"epoch": 2.17,
|
3175 |
+
"learning_rate": 3.797023370376618e-06,
|
3176 |
+
"loss": 1.0179,
|
3177 |
+
"step": 2475
|
3178 |
+
},
|
3179 |
+
{
|
3180 |
+
"epoch": 2.17,
|
3181 |
+
"learning_rate": 3.7597918077959306e-06,
|
3182 |
+
"loss": 0.9973,
|
3183 |
+
"step": 2480
|
3184 |
+
},
|
3185 |
+
{
|
3186 |
+
"epoch": 2.18,
|
3187 |
+
"learning_rate": 3.7227013757111197e-06,
|
3188 |
+
"loss": 1.0187,
|
3189 |
+
"step": 2485
|
3190 |
+
},
|
3191 |
+
{
|
3192 |
+
"epoch": 2.18,
|
3193 |
+
"learning_rate": 3.6857529129709655e-06,
|
3194 |
+
"loss": 0.9903,
|
3195 |
+
"step": 2490
|
3196 |
+
},
|
3197 |
+
{
|
3198 |
+
"epoch": 2.19,
|
3199 |
+
"learning_rate": 3.64894725521344e-06,
|
3200 |
+
"loss": 1.0046,
|
3201 |
+
"step": 2495
|
3202 |
+
},
|
3203 |
+
{
|
3204 |
+
"epoch": 2.19,
|
3205 |
+
"learning_rate": 3.61228523484678e-06,
|
3206 |
+
"loss": 1.0088,
|
3207 |
+
"step": 2500
|
3208 |
+
},
|
3209 |
+
{
|
3210 |
+
"epoch": 2.19,
|
3211 |
+
"eval_loss": 1.116758108139038,
|
3212 |
+
"eval_runtime": 424.4029,
|
3213 |
+
"eval_samples_per_second": 38.091,
|
3214 |
+
"eval_steps_per_second": 1.192,
|
3215 |
+
"step": 2500
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 2.19,
|
3219 |
+
"learning_rate": 3.5757676810306775e-06,
|
3220 |
+
"loss": 1.0017,
|
3221 |
+
"step": 2505
|
3222 |
+
},
|
3223 |
+
{
|
3224 |
+
"epoch": 2.2,
|
3225 |
+
"learning_rate": 3.539395419657531e-06,
|
3226 |
+
"loss": 1.012,
|
3227 |
+
"step": 2510
|
3228 |
+
},
|
3229 |
+
{
|
3230 |
+
"epoch": 2.2,
|
3231 |
+
"learning_rate": 3.5031692733337475e-06,
|
3232 |
+
"loss": 1.0044,
|
3233 |
+
"step": 2515
|
3234 |
+
},
|
3235 |
+
{
|
3236 |
+
"epoch": 2.21,
|
3237 |
+
"learning_rate": 3.4670900613611656e-06,
|
3238 |
+
"loss": 0.9957,
|
3239 |
+
"step": 2520
|
3240 |
+
},
|
3241 |
+
{
|
3242 |
+
"epoch": 2.21,
|
3243 |
+
"learning_rate": 3.431158599718496e-06,
|
3244 |
+
"loss": 1.0168,
|
3245 |
+
"step": 2525
|
3246 |
+
},
|
3247 |
+
{
|
3248 |
+
"epoch": 2.22,
|
3249 |
+
"learning_rate": 3.3953757010428946e-06,
|
3250 |
+
"loss": 1.0231,
|
3251 |
+
"step": 2530
|
3252 |
+
},
|
3253 |
+
{
|
3254 |
+
"epoch": 2.22,
|
3255 |
+
"learning_rate": 3.359742174611558e-06,
|
3256 |
+
"loss": 1.0059,
|
3257 |
+
"step": 2535
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 2.23,
|
3261 |
+
"learning_rate": 3.3242588263234467e-06,
|
3262 |
+
"loss": 1.0014,
|
3263 |
+
"step": 2540
|
3264 |
+
},
|
3265 |
+
{
|
3266 |
+
"epoch": 2.23,
|
3267 |
+
"learning_rate": 3.2889264586810323e-06,
|
3268 |
+
"loss": 0.9925,
|
3269 |
+
"step": 2545
|
3270 |
+
},
|
3271 |
+
{
|
3272 |
+
"epoch": 2.23,
|
3273 |
+
"learning_rate": 3.2537458707721735e-06,
|
3274 |
+
"loss": 1.0068,
|
3275 |
+
"step": 2550
|
3276 |
+
},
|
3277 |
+
{
|
3278 |
+
"epoch": 2.24,
|
3279 |
+
"learning_rate": 3.2187178582520206e-06,
|
3280 |
+
"loss": 1.0192,
|
3281 |
+
"step": 2555
|
3282 |
+
},
|
3283 |
+
{
|
3284 |
+
"epoch": 2.24,
|
3285 |
+
"learning_rate": 3.183843213325042e-06,
|
3286 |
+
"loss": 0.9856,
|
3287 |
+
"step": 2560
|
3288 |
+
},
|
3289 |
+
{
|
3290 |
+
"epoch": 2.25,
|
3291 |
+
"learning_rate": 3.149122724727083e-06,
|
3292 |
+
"loss": 1.018,
|
3293 |
+
"step": 2565
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 2.25,
|
3297 |
+
"learning_rate": 3.1145571777075577e-06,
|
3298 |
+
"loss": 1.0022,
|
3299 |
+
"step": 2570
|
3300 |
+
},
|
3301 |
+
{
|
3302 |
+
"epoch": 2.26,
|
3303 |
+
"learning_rate": 3.080147354011659e-06,
|
3304 |
+
"loss": 0.9909,
|
3305 |
+
"step": 2575
|
3306 |
+
},
|
3307 |
+
{
|
3308 |
+
"epoch": 2.26,
|
3309 |
+
"learning_rate": 3.0458940318626963e-06,
|
3310 |
+
"loss": 1.0082,
|
3311 |
+
"step": 2580
|
3312 |
+
},
|
3313 |
+
{
|
3314 |
+
"epoch": 2.26,
|
3315 |
+
"learning_rate": 3.011797985944499e-06,
|
3316 |
+
"loss": 1.0178,
|
3317 |
+
"step": 2585
|
3318 |
+
},
|
3319 |
+
{
|
3320 |
+
"epoch": 2.27,
|
3321 |
+
"learning_rate": 2.977859987383874e-06,
|
3322 |
+
"loss": 1.0055,
|
3323 |
+
"step": 2590
|
3324 |
+
},
|
3325 |
+
{
|
3326 |
+
"epoch": 2.27,
|
3327 |
+
"learning_rate": 2.944080803733197e-06,
|
3328 |
+
"loss": 0.9863,
|
3329 |
+
"step": 2595
|
3330 |
+
},
|
3331 |
+
{
|
3332 |
+
"epoch": 2.28,
|
3333 |
+
"learning_rate": 2.9104611989530196e-06,
|
3334 |
+
"loss": 1.002,
|
3335 |
+
"step": 2600
|
3336 |
+
},
|
3337 |
+
{
|
3338 |
+
"epoch": 2.28,
|
3339 |
+
"eval_loss": 1.116153359413147,
|
3340 |
+
"eval_runtime": 424.7781,
|
3341 |
+
"eval_samples_per_second": 38.058,
|
3342 |
+
"eval_steps_per_second": 1.191,
|
3343 |
+
"step": 2600
|
3344 |
+
},
|
3345 |
+
{
|
3346 |
+
"epoch": 2.28,
|
3347 |
+
"learning_rate": 2.8770019333948197e-06,
|
3348 |
+
"loss": 1.0141,
|
3349 |
+
"step": 2605
|
3350 |
+
},
|
3351 |
+
{
|
3352 |
+
"epoch": 2.29,
|
3353 |
+
"learning_rate": 2.843703763783785e-06,
|
3354 |
+
"loss": 1.0078,
|
3355 |
+
"step": 2610
|
3356 |
+
},
|
3357 |
+
{
|
3358 |
+
"epoch": 2.29,
|
3359 |
+
"learning_rate": 2.810567443201717e-06,
|
3360 |
+
"loss": 1.0025,
|
3361 |
+
"step": 2615
|
3362 |
+
},
|
3363 |
+
{
|
3364 |
+
"epoch": 2.3,
|
3365 |
+
"learning_rate": 2.7775937210699754e-06,
|
3366 |
+
"loss": 1.009,
|
3367 |
+
"step": 2620
|
3368 |
+
},
|
3369 |
+
{
|
3370 |
+
"epoch": 2.3,
|
3371 |
+
"learning_rate": 2.7447833431325566e-06,
|
3372 |
+
"loss": 0.9782,
|
3373 |
+
"step": 2625
|
3374 |
+
},
|
3375 |
+
{
|
3376 |
+
"epoch": 2.3,
|
3377 |
+
"learning_rate": 2.712137051439202e-06,
|
3378 |
+
"loss": 1.0158,
|
3379 |
+
"step": 2630
|
3380 |
+
},
|
3381 |
+
{
|
3382 |
+
"epoch": 2.31,
|
3383 |
+
"learning_rate": 2.6796555843286375e-06,
|
3384 |
+
"loss": 1.007,
|
3385 |
+
"step": 2635
|
3386 |
+
},
|
3387 |
+
{
|
3388 |
+
"epoch": 2.31,
|
3389 |
+
"learning_rate": 2.6473396764118575e-06,
|
3390 |
+
"loss": 1.0088,
|
3391 |
+
"step": 2640
|
3392 |
+
},
|
3393 |
+
{
|
3394 |
+
"epoch": 2.32,
|
3395 |
+
"learning_rate": 2.6151900585555178e-06,
|
3396 |
+
"loss": 1.0053,
|
3397 |
+
"step": 2645
|
3398 |
+
},
|
3399 |
+
{
|
3400 |
+
"epoch": 2.32,
|
3401 |
+
"learning_rate": 2.583207457865413e-06,
|
3402 |
+
"loss": 1.0002,
|
3403 |
+
"step": 2650
|
3404 |
+
},
|
3405 |
+
{
|
3406 |
+
"epoch": 2.33,
|
3407 |
+
"learning_rate": 2.5513925976700217e-06,
|
3408 |
+
"loss": 1.0031,
|
3409 |
+
"step": 2655
|
3410 |
+
},
|
3411 |
+
{
|
3412 |
+
"epoch": 2.33,
|
3413 |
+
"learning_rate": 2.519746197504144e-06,
|
3414 |
+
"loss": 1.0156,
|
3415 |
+
"step": 2660
|
3416 |
+
},
|
3417 |
+
{
|
3418 |
+
"epoch": 2.33,
|
3419 |
+
"learning_rate": 2.488268973092649e-06,
|
3420 |
+
"loss": 1.0093,
|
3421 |
+
"step": 2665
|
3422 |
+
},
|
3423 |
+
{
|
3424 |
+
"epoch": 2.34,
|
3425 |
+
"learning_rate": 2.456961636334265e-06,
|
3426 |
+
"loss": 1.0296,
|
3427 |
+
"step": 2670
|
3428 |
+
},
|
3429 |
+
{
|
3430 |
+
"epoch": 2.34,
|
3431 |
+
"learning_rate": 2.425824895285488e-06,
|
3432 |
+
"loss": 1.0007,
|
3433 |
+
"step": 2675
|
3434 |
+
},
|
3435 |
+
{
|
3436 |
+
"epoch": 2.35,
|
3437 |
+
"learning_rate": 2.3948594541445735e-06,
|
3438 |
+
"loss": 1.0107,
|
3439 |
+
"step": 2680
|
3440 |
+
},
|
3441 |
+
{
|
3442 |
+
"epoch": 2.35,
|
3443 |
+
"learning_rate": 2.3640660132356e-06,
|
3444 |
+
"loss": 0.9927,
|
3445 |
+
"step": 2685
|
3446 |
+
},
|
3447 |
+
{
|
3448 |
+
"epoch": 2.36,
|
3449 |
+
"learning_rate": 2.333445268992639e-06,
|
3450 |
+
"loss": 1.0004,
|
3451 |
+
"step": 2690
|
3452 |
+
},
|
3453 |
+
{
|
3454 |
+
"epoch": 2.36,
|
3455 |
+
"learning_rate": 2.302997913943994e-06,
|
3456 |
+
"loss": 1.014,
|
3457 |
+
"step": 2695
|
3458 |
+
},
|
3459 |
+
{
|
3460 |
+
"epoch": 2.37,
|
3461 |
+
"learning_rate": 2.272724636696555e-06,
|
3462 |
+
"loss": 1.0004,
|
3463 |
+
"step": 2700
|
3464 |
+
},
|
3465 |
+
{
|
3466 |
+
"epoch": 2.37,
|
3467 |
+
"eval_loss": 1.1156811714172363,
|
3468 |
+
"eval_runtime": 425.4077,
|
3469 |
+
"eval_samples_per_second": 38.001,
|
3470 |
+
"eval_steps_per_second": 1.189,
|
3471 |
+
"step": 2700
|
3472 |
+
},
|
3473 |
+
{
|
3474 |
+
"epoch": 2.37,
|
3475 |
+
"learning_rate": 2.2426261219202006e-06,
|
3476 |
+
"loss": 1.0019,
|
3477 |
+
"step": 2705
|
3478 |
+
},
|
3479 |
+
{
|
3480 |
+
"epoch": 2.37,
|
3481 |
+
"learning_rate": 2.21270305033234e-06,
|
3482 |
+
"loss": 1.0127,
|
3483 |
+
"step": 2710
|
3484 |
+
},
|
3485 |
+
{
|
3486 |
+
"epoch": 2.38,
|
3487 |
+
"learning_rate": 2.1829560986824937e-06,
|
3488 |
+
"loss": 1.0168,
|
3489 |
+
"step": 2715
|
3490 |
+
},
|
3491 |
+
{
|
3492 |
+
"epoch": 2.38,
|
3493 |
+
"learning_rate": 2.1533859397370084e-06,
|
3494 |
+
"loss": 1.0059,
|
3495 |
+
"step": 2720
|
3496 |
+
},
|
3497 |
+
{
|
3498 |
+
"epoch": 2.39,
|
3499 |
+
"learning_rate": 2.1239932422638234e-06,
|
3500 |
+
"loss": 1.0172,
|
3501 |
+
"step": 2725
|
3502 |
+
},
|
3503 |
+
{
|
3504 |
+
"epoch": 2.39,
|
3505 |
+
"learning_rate": 2.0947786710173545e-06,
|
3506 |
+
"loss": 1.0097,
|
3507 |
+
"step": 2730
|
3508 |
+
},
|
3509 |
+
{
|
3510 |
+
"epoch": 2.4,
|
3511 |
+
"learning_rate": 2.06574288672347e-06,
|
3512 |
+
"loss": 1.0079,
|
3513 |
+
"step": 2735
|
3514 |
+
},
|
3515 |
+
{
|
3516 |
+
"epoch": 2.4,
|
3517 |
+
"learning_rate": 2.0368865460645202e-06,
|
3518 |
+
"loss": 0.9919,
|
3519 |
+
"step": 2740
|
3520 |
+
},
|
3521 |
+
{
|
3522 |
+
"epoch": 2.4,
|
3523 |
+
"learning_rate": 2.008210301664518e-06,
|
3524 |
+
"loss": 1.0132,
|
3525 |
+
"step": 2745
|
3526 |
+
},
|
3527 |
+
{
|
3528 |
+
"epoch": 2.41,
|
3529 |
+
"learning_rate": 1.9797148020743496e-06,
|
3530 |
+
"loss": 1.0044,
|
3531 |
+
"step": 2750
|
3532 |
+
},
|
3533 |
+
{
|
3534 |
+
"epoch": 2.41,
|
3535 |
+
"learning_rate": 1.951400691757133e-06,
|
3536 |
+
"loss": 1.0037,
|
3537 |
+
"step": 2755
|
3538 |
+
},
|
3539 |
+
{
|
3540 |
+
"epoch": 2.42,
|
3541 |
+
"learning_rate": 1.9232686110736165e-06,
|
3542 |
+
"loss": 1.0074,
|
3543 |
+
"step": 2760
|
3544 |
+
},
|
3545 |
+
{
|
3546 |
+
"epoch": 2.42,
|
3547 |
+
"learning_rate": 1.895319196267722e-06,
|
3548 |
+
"loss": 1.0179,
|
3549 |
+
"step": 2765
|
3550 |
+
},
|
3551 |
+
{
|
3552 |
+
"epoch": 2.43,
|
3553 |
+
"learning_rate": 1.8675530794521312e-06,
|
3554 |
+
"loss": 0.9982,
|
3555 |
+
"step": 2770
|
3556 |
+
},
|
3557 |
+
{
|
3558 |
+
"epoch": 2.43,
|
3559 |
+
"learning_rate": 1.8399708885940136e-06,
|
3560 |
+
"loss": 1.0088,
|
3561 |
+
"step": 2775
|
3562 |
+
},
|
3563 |
+
{
|
3564 |
+
"epoch": 2.44,
|
3565 |
+
"learning_rate": 1.8125732475007983e-06,
|
3566 |
+
"loss": 1.0117,
|
3567 |
+
"step": 2780
|
3568 |
+
},
|
3569 |
+
{
|
3570 |
+
"epoch": 2.44,
|
3571 |
+
"learning_rate": 1.785360775806093e-06,
|
3572 |
+
"loss": 1.0079,
|
3573 |
+
"step": 2785
|
3574 |
+
},
|
3575 |
+
{
|
3576 |
+
"epoch": 2.44,
|
3577 |
+
"learning_rate": 1.7583340889556456e-06,
|
3578 |
+
"loss": 0.9921,
|
3579 |
+
"step": 2790
|
3580 |
+
},
|
3581 |
+
{
|
3582 |
+
"epoch": 2.45,
|
3583 |
+
"learning_rate": 1.7314937981934399e-06,
|
3584 |
+
"loss": 1.0013,
|
3585 |
+
"step": 2795
|
3586 |
+
},
|
3587 |
+
{
|
3588 |
+
"epoch": 2.45,
|
3589 |
+
"learning_rate": 1.7048405105478717e-06,
|
3590 |
+
"loss": 1.0058,
|
3591 |
+
"step": 2800
|
3592 |
+
},
|
3593 |
+
{
|
3594 |
+
"epoch": 2.45,
|
3595 |
+
"eval_loss": 1.115598440170288,
|
3596 |
+
"eval_runtime": 425.102,
|
3597 |
+
"eval_samples_per_second": 38.029,
|
3598 |
+
"eval_steps_per_second": 1.19,
|
3599 |
+
"step": 2800
|
3600 |
+
},
|
3601 |
+
{
|
3602 |
+
"epoch": 2.46,
|
3603 |
+
"learning_rate": 1.6783748288180058e-06,
|
3604 |
+
"loss": 1.0048,
|
3605 |
+
"step": 2805
|
3606 |
+
},
|
3607 |
+
{
|
3608 |
+
"epoch": 2.46,
|
3609 |
+
"learning_rate": 1.652097351559967e-06,
|
3610 |
+
"loss": 1.0108,
|
3611 |
+
"step": 2810
|
3612 |
+
},
|
3613 |
+
{
|
3614 |
+
"epoch": 2.47,
|
3615 |
+
"learning_rate": 1.6260086730733749e-06,
|
3616 |
+
"loss": 1.014,
|
3617 |
+
"step": 2815
|
3618 |
+
},
|
3619 |
+
{
|
3620 |
+
"epoch": 2.47,
|
3621 |
+
"learning_rate": 1.6001093833879288e-06,
|
3622 |
+
"loss": 1.0037,
|
3623 |
+
"step": 2820
|
3624 |
+
},
|
3625 |
+
{
|
3626 |
+
"epoch": 2.47,
|
3627 |
+
"learning_rate": 1.5744000682500426e-06,
|
3628 |
+
"loss": 0.9953,
|
3629 |
+
"step": 2825
|
3630 |
+
},
|
3631 |
+
{
|
3632 |
+
"epoch": 2.48,
|
3633 |
+
"learning_rate": 1.5488813091096145e-06,
|
3634 |
+
"loss": 1.0152,
|
3635 |
+
"step": 2830
|
3636 |
+
},
|
3637 |
+
{
|
3638 |
+
"epoch": 2.48,
|
3639 |
+
"learning_rate": 1.523553683106861e-06,
|
3640 |
+
"loss": 1.0242,
|
3641 |
+
"step": 2835
|
3642 |
+
},
|
3643 |
+
{
|
3644 |
+
"epoch": 2.49,
|
3645 |
+
"learning_rate": 1.49841776305928e-06,
|
3646 |
+
"loss": 1.0172,
|
3647 |
+
"step": 2840
|
3648 |
+
},
|
3649 |
+
{
|
3650 |
+
"epoch": 2.49,
|
3651 |
+
"learning_rate": 1.4734741174486788e-06,
|
3652 |
+
"loss": 0.9999,
|
3653 |
+
"step": 2845
|
3654 |
+
},
|
3655 |
+
{
|
3656 |
+
"epoch": 2.5,
|
3657 |
+
"learning_rate": 1.4487233104083354e-06,
|
3658 |
+
"loss": 1.011,
|
3659 |
+
"step": 2850
|
3660 |
+
},
|
3661 |
+
{
|
3662 |
+
"epoch": 2.5,
|
3663 |
+
"learning_rate": 1.424165901710224e-06,
|
3664 |
+
"loss": 1.0154,
|
3665 |
+
"step": 2855
|
3666 |
+
},
|
3667 |
+
{
|
3668 |
+
"epoch": 2.51,
|
3669 |
+
"learning_rate": 1.3998024467523596e-06,
|
3670 |
+
"loss": 0.9912,
|
3671 |
+
"step": 2860
|
3672 |
+
},
|
3673 |
+
{
|
3674 |
+
"epoch": 2.51,
|
3675 |
+
"learning_rate": 1.3756334965462502e-06,
|
3676 |
+
"loss": 1.0276,
|
3677 |
+
"step": 2865
|
3678 |
+
},
|
3679 |
+
{
|
3680 |
+
"epoch": 2.51,
|
3681 |
+
"learning_rate": 1.3516595977044112e-06,
|
3682 |
+
"loss": 1.0051,
|
3683 |
+
"step": 2870
|
3684 |
+
},
|
3685 |
+
{
|
3686 |
+
"epoch": 2.52,
|
3687 |
+
"learning_rate": 1.3278812924280192e-06,
|
3688 |
+
"loss": 0.9893,
|
3689 |
+
"step": 2875
|
3690 |
+
},
|
3691 |
+
{
|
3692 |
+
"epoch": 2.52,
|
3693 |
+
"learning_rate": 1.304299118494652e-06,
|
3694 |
+
"loss": 1.0048,
|
3695 |
+
"step": 2880
|
3696 |
+
},
|
3697 |
+
{
|
3698 |
+
"epoch": 2.53,
|
3699 |
+
"learning_rate": 1.2809136092461084e-06,
|
3700 |
+
"loss": 1.0196,
|
3701 |
+
"step": 2885
|
3702 |
+
},
|
3703 |
+
{
|
3704 |
+
"epoch": 2.53,
|
3705 |
+
"learning_rate": 1.2577252935763695e-06,
|
3706 |
+
"loss": 1.0261,
|
3707 |
+
"step": 2890
|
3708 |
+
},
|
3709 |
+
{
|
3710 |
+
"epoch": 2.54,
|
3711 |
+
"learning_rate": 1.234734695919616e-06,
|
3712 |
+
"loss": 1.0118,
|
3713 |
+
"step": 2895
|
3714 |
+
},
|
3715 |
+
{
|
3716 |
+
"epoch": 2.54,
|
3717 |
+
"learning_rate": 1.2119423362383776e-06,
|
3718 |
+
"loss": 1.0118,
|
3719 |
+
"step": 2900
|
3720 |
+
},
|
3721 |
+
{
|
3722 |
+
"epoch": 2.54,
|
3723 |
+
"eval_loss": 1.1150012016296387,
|
3724 |
+
"eval_runtime": 425.4063,
|
3725 |
+
"eval_samples_per_second": 38.001,
|
3726 |
+
"eval_steps_per_second": 1.189,
|
3727 |
+
"step": 2900
|
3728 |
+
},
|
3729 |
+
{
|
3730 |
+
"epoch": 2.54,
|
3731 |
+
"learning_rate": 1.189348730011778e-06,
|
3732 |
+
"loss": 0.9927,
|
3733 |
+
"step": 2905
|
3734 |
+
},
|
3735 |
+
{
|
3736 |
+
"epoch": 2.55,
|
3737 |
+
"learning_rate": 1.166954388223862e-06,
|
3738 |
+
"loss": 1.0023,
|
3739 |
+
"step": 2910
|
3740 |
+
},
|
3741 |
+
{
|
3742 |
+
"epoch": 2.55,
|
3743 |
+
"learning_rate": 1.1447598173520558e-06,
|
3744 |
+
"loss": 1.009,
|
3745 |
+
"step": 2915
|
3746 |
+
},
|
3747 |
+
{
|
3748 |
+
"epoch": 2.56,
|
3749 |
+
"learning_rate": 1.1227655193556973e-06,
|
3750 |
+
"loss": 1.0049,
|
3751 |
+
"step": 2920
|
3752 |
+
},
|
3753 |
+
{
|
3754 |
+
"epoch": 2.56,
|
3755 |
+
"learning_rate": 1.1009719916646977e-06,
|
3756 |
+
"loss": 1.0065,
|
3757 |
+
"step": 2925
|
3758 |
+
},
|
3759 |
+
{
|
3760 |
+
"epoch": 2.57,
|
3761 |
+
"learning_rate": 1.079379727168276e-06,
|
3762 |
+
"loss": 1.0006,
|
3763 |
+
"step": 2930
|
3764 |
+
},
|
3765 |
+
{
|
3766 |
+
"epoch": 2.57,
|
3767 |
+
"learning_rate": 1.0579892142038284e-06,
|
3768 |
+
"loss": 1.0174,
|
3769 |
+
"step": 2935
|
3770 |
+
},
|
3771 |
+
{
|
3772 |
+
"epoch": 2.58,
|
3773 |
+
"learning_rate": 1.0368009365458697e-06,
|
3774 |
+
"loss": 1.0044,
|
3775 |
+
"step": 2940
|
3776 |
+
},
|
3777 |
+
{
|
3778 |
+
"epoch": 2.58,
|
3779 |
+
"learning_rate": 1.0158153733950981e-06,
|
3780 |
+
"loss": 1.0045,
|
3781 |
+
"step": 2945
|
3782 |
+
},
|
3783 |
+
{
|
3784 |
+
"epoch": 2.58,
|
3785 |
+
"learning_rate": 9.950329993675623e-07,
|
3786 |
+
"loss": 0.9917,
|
3787 |
+
"step": 2950
|
3788 |
+
},
|
3789 |
+
{
|
3790 |
+
"epoch": 2.59,
|
3791 |
+
"learning_rate": 9.744542844839145e-07,
|
3792 |
+
"loss": 1.006,
|
3793 |
+
"step": 2955
|
3794 |
+
},
|
3795 |
+
{
|
3796 |
+
"epoch": 2.59,
|
3797 |
+
"learning_rate": 9.540796941587983e-07,
|
3798 |
+
"loss": 0.9955,
|
3799 |
+
"step": 2960
|
3800 |
+
},
|
3801 |
+
{
|
3802 |
+
"epoch": 2.6,
|
3803 |
+
"learning_rate": 9.33909689190301e-07,
|
3804 |
+
"loss": 1.0065,
|
3805 |
+
"step": 2965
|
3806 |
+
},
|
3807 |
+
{
|
3808 |
+
"epoch": 2.6,
|
3809 |
+
"learning_rate": 9.139447257495537e-07,
|
3810 |
+
"loss": 1.0212,
|
3811 |
+
"step": 2970
|
3812 |
+
},
|
3813 |
+
{
|
3814 |
+
"epoch": 2.61,
|
3815 |
+
"learning_rate": 8.941852553703966e-07,
|
3816 |
+
"loss": 1.0156,
|
3817 |
+
"step": 2975
|
3818 |
+
},
|
3819 |
+
{
|
3820 |
+
"epoch": 2.61,
|
3821 |
+
"learning_rate": 8.746317249391834e-07,
|
3822 |
+
"loss": 1.0045,
|
3823 |
+
"step": 2980
|
3824 |
+
},
|
3825 |
+
{
|
3826 |
+
"epoch": 2.61,
|
3827 |
+
"learning_rate": 8.55284576684654e-07,
|
3828 |
+
"loss": 1.0163,
|
3829 |
+
"step": 2985
|
3830 |
+
},
|
3831 |
+
{
|
3832 |
+
"epoch": 2.62,
|
3833 |
+
"learning_rate": 8.361442481679561e-07,
|
3834 |
+
"loss": 1.0048,
|
3835 |
+
"step": 2990
|
3836 |
+
},
|
3837 |
+
{
|
3838 |
+
"epoch": 2.62,
|
3839 |
+
"learning_rate": 8.172111722727294e-07,
|
3840 |
+
"loss": 1.0107,
|
3841 |
+
"step": 2995
|
3842 |
+
},
|
3843 |
+
{
|
3844 |
+
"epoch": 2.63,
|
3845 |
+
"learning_rate": 7.984857771953303e-07,
|
3846 |
+
"loss": 0.9941,
|
3847 |
+
"step": 3000
|
3848 |
+
},
|
3849 |
+
{
|
3850 |
+
"epoch": 2.63,
|
3851 |
+
"eval_loss": 1.1147677898406982,
|
3852 |
+
"eval_runtime": 425.2487,
|
3853 |
+
"eval_samples_per_second": 38.015,
|
3854 |
+
"eval_steps_per_second": 1.19,
|
3855 |
+
"step": 3000
|
3856 |
+
},
|
3857 |
+
{
|
3858 |
+
"epoch": 2.63,
|
3859 |
+
"learning_rate": 7.799684864351342e-07,
|
3860 |
+
"loss": 1.0063,
|
3861 |
+
"step": 3005
|
3862 |
+
},
|
3863 |
+
{
|
3864 |
+
"epoch": 2.64,
|
3865 |
+
"learning_rate": 7.616597187849683e-07,
|
3866 |
+
"loss": 0.9949,
|
3867 |
+
"step": 3010
|
3868 |
+
},
|
3869 |
+
{
|
3870 |
+
"epoch": 2.64,
|
3871 |
+
"learning_rate": 7.435598883216377e-07,
|
3872 |
+
"loss": 1.0021,
|
3873 |
+
"step": 3015
|
3874 |
+
},
|
3875 |
+
{
|
3876 |
+
"epoch": 2.65,
|
3877 |
+
"learning_rate": 7.256694043965528e-07,
|
3878 |
+
"loss": 1.001,
|
3879 |
+
"step": 3020
|
3880 |
+
},
|
3881 |
+
{
|
3882 |
+
"epoch": 2.65,
|
3883 |
+
"learning_rate": 7.07988671626485e-07,
|
3884 |
+
"loss": 1.018,
|
3885 |
+
"step": 3025
|
3886 |
+
},
|
3887 |
+
{
|
3888 |
+
"epoch": 2.65,
|
3889 |
+
"learning_rate": 6.905180898844022e-07,
|
3890 |
+
"loss": 0.9964,
|
3891 |
+
"step": 3030
|
3892 |
+
},
|
3893 |
+
{
|
3894 |
+
"epoch": 2.66,
|
3895 |
+
"learning_rate": 6.732580542904343e-07,
|
3896 |
+
"loss": 0.9887,
|
3897 |
+
"step": 3035
|
3898 |
+
},
|
3899 |
+
{
|
3900 |
+
"epoch": 2.66,
|
3901 |
+
"learning_rate": 6.562089552029305e-07,
|
3902 |
+
"loss": 1.0085,
|
3903 |
+
"step": 3040
|
3904 |
+
},
|
3905 |
+
{
|
3906 |
+
"epoch": 2.67,
|
3907 |
+
"learning_rate": 6.39371178209639e-07,
|
3908 |
+
"loss": 1.0064,
|
3909 |
+
"step": 3045
|
3910 |
+
},
|
3911 |
+
{
|
3912 |
+
"epoch": 2.67,
|
3913 |
+
"learning_rate": 6.227451041189759e-07,
|
3914 |
+
"loss": 1.0034,
|
3915 |
+
"step": 3050
|
3916 |
+
},
|
3917 |
+
{
|
3918 |
+
"epoch": 2.68,
|
3919 |
+
"learning_rate": 6.063311089514256e-07,
|
3920 |
+
"loss": 1.0158,
|
3921 |
+
"step": 3055
|
3922 |
+
},
|
3923 |
+
{
|
3924 |
+
"epoch": 2.68,
|
3925 |
+
"learning_rate": 5.901295639310212e-07,
|
3926 |
+
"loss": 1.0108,
|
3927 |
+
"step": 3060
|
3928 |
+
},
|
3929 |
+
{
|
3930 |
+
"epoch": 2.69,
|
3931 |
+
"learning_rate": 5.74140835476964e-07,
|
3932 |
+
"loss": 1.0218,
|
3933 |
+
"step": 3065
|
3934 |
+
},
|
3935 |
+
{
|
3936 |
+
"epoch": 2.69,
|
3937 |
+
"learning_rate": 5.583652851953225e-07,
|
3938 |
+
"loss": 1.0002,
|
3939 |
+
"step": 3070
|
3940 |
+
},
|
3941 |
+
{
|
3942 |
+
"epoch": 2.69,
|
3943 |
+
"learning_rate": 5.428032698708696e-07,
|
3944 |
+
"loss": 0.9974,
|
3945 |
+
"step": 3075
|
3946 |
+
},
|
3947 |
+
{
|
3948 |
+
"epoch": 2.7,
|
3949 |
+
"learning_rate": 5.274551414589979e-07,
|
3950 |
+
"loss": 1.0071,
|
3951 |
+
"step": 3080
|
3952 |
+
},
|
3953 |
+
{
|
3954 |
+
"epoch": 2.7,
|
3955 |
+
"learning_rate": 5.123212470777684e-07,
|
3956 |
+
"loss": 1.0226,
|
3957 |
+
"step": 3085
|
3958 |
+
},
|
3959 |
+
{
|
3960 |
+
"epoch": 2.71,
|
3961 |
+
"learning_rate": 4.97401929000062e-07,
|
3962 |
+
"loss": 1.005,
|
3963 |
+
"step": 3090
|
3964 |
+
},
|
3965 |
+
{
|
3966 |
+
"epoch": 2.71,
|
3967 |
+
"learning_rate": 4.826975246458299e-07,
|
3968 |
+
"loss": 1.0073,
|
3969 |
+
"step": 3095
|
3970 |
+
},
|
3971 |
+
{
|
3972 |
+
"epoch": 2.72,
|
3973 |
+
"learning_rate": 4.6820836657446964e-07,
|
3974 |
+
"loss": 1.0127,
|
3975 |
+
"step": 3100
|
3976 |
+
},
|
3977 |
+
{
|
3978 |
+
"epoch": 2.72,
|
3979 |
+
"eval_loss": 1.11471688747406,
|
3980 |
+
"eval_runtime": 425.0331,
|
3981 |
+
"eval_samples_per_second": 38.035,
|
3982 |
+
"eval_steps_per_second": 1.19,
|
3983 |
+
"step": 3100
|
3984 |
+
},
|
3985 |
+
{
|
3986 |
+
"epoch": 2.72,
|
3987 |
+
"learning_rate": 4.5393478247730436e-07,
|
3988 |
+
"loss": 1.0162,
|
3989 |
+
"step": 3105
|
3990 |
+
},
|
3991 |
+
{
|
3992 |
+
"epoch": 2.72,
|
3993 |
+
"learning_rate": 4.398770951701647e-07,
|
3994 |
+
"loss": 1.0037,
|
3995 |
+
"step": 3110
|
3996 |
+
},
|
3997 |
+
{
|
3998 |
+
"epoch": 2.73,
|
3999 |
+
"learning_rate": 4.2603562258609176e-07,
|
4000 |
+
"loss": 1.0036,
|
4001 |
+
"step": 3115
|
4002 |
+
},
|
4003 |
+
{
|
4004 |
+
"epoch": 2.73,
|
4005 |
+
"learning_rate": 4.124106777681536e-07,
|
4006 |
+
"loss": 0.9959,
|
4007 |
+
"step": 3120
|
4008 |
+
},
|
4009 |
+
{
|
4010 |
+
"epoch": 2.74,
|
4011 |
+
"learning_rate": 3.9900256886235e-07,
|
4012 |
+
"loss": 0.9993,
|
4013 |
+
"step": 3125
|
4014 |
+
},
|
4015 |
+
{
|
4016 |
+
"epoch": 2.74,
|
4017 |
+
"learning_rate": 3.8581159911065926e-07,
|
4018 |
+
"loss": 1.0137,
|
4019 |
+
"step": 3130
|
4020 |
+
},
|
4021 |
+
{
|
4022 |
+
"epoch": 2.75,
|
4023 |
+
"learning_rate": 3.7283806684416777e-07,
|
4024 |
+
"loss": 1.0166,
|
4025 |
+
"step": 3135
|
4026 |
+
},
|
4027 |
+
{
|
4028 |
+
"epoch": 2.75,
|
4029 |
+
"learning_rate": 3.600822654763314e-07,
|
4030 |
+
"loss": 0.9931,
|
4031 |
+
"step": 3140
|
4032 |
+
},
|
4033 |
+
{
|
4034 |
+
"epoch": 2.76,
|
4035 |
+
"learning_rate": 3.4754448349633374e-07,
|
4036 |
+
"loss": 0.9939,
|
4037 |
+
"step": 3145
|
4038 |
+
},
|
4039 |
+
{
|
4040 |
+
"epoch": 2.76,
|
4041 |
+
"learning_rate": 3.35225004462566e-07,
|
4042 |
+
"loss": 1.0135,
|
4043 |
+
"step": 3150
|
4044 |
+
},
|
4045 |
+
{
|
4046 |
+
"epoch": 2.76,
|
4047 |
+
"learning_rate": 3.2312410699620986e-07,
|
4048 |
+
"loss": 1.0142,
|
4049 |
+
"step": 3155
|
4050 |
+
},
|
4051 |
+
{
|
4052 |
+
"epoch": 2.77,
|
4053 |
+
"learning_rate": 3.11242064774937e-07,
|
4054 |
+
"loss": 0.993,
|
4055 |
+
"step": 3160
|
4056 |
+
},
|
4057 |
+
{
|
4058 |
+
"epoch": 2.77,
|
4059 |
+
"learning_rate": 2.99579146526725e-07,
|
4060 |
+
"loss": 0.9925,
|
4061 |
+
"step": 3165
|
4062 |
+
},
|
4063 |
+
{
|
4064 |
+
"epoch": 2.78,
|
4065 |
+
"learning_rate": 2.8813561602377025e-07,
|
4066 |
+
"loss": 1.0074,
|
4067 |
+
"step": 3170
|
4068 |
+
},
|
4069 |
+
{
|
4070 |
+
"epoch": 2.78,
|
4071 |
+
"learning_rate": 2.7691173207653355e-07,
|
4072 |
+
"loss": 1.0099,
|
4073 |
+
"step": 3175
|
4074 |
+
},
|
4075 |
+
{
|
4076 |
+
"epoch": 2.79,
|
4077 |
+
"learning_rate": 2.659077485278716e-07,
|
4078 |
+
"loss": 1.0112,
|
4079 |
+
"step": 3180
|
4080 |
+
},
|
4081 |
+
{
|
4082 |
+
"epoch": 2.79,
|
4083 |
+
"learning_rate": 2.551239142473161e-07,
|
4084 |
+
"loss": 1.0004,
|
4085 |
+
"step": 3185
|
4086 |
+
},
|
4087 |
+
{
|
4088 |
+
"epoch": 2.79,
|
4089 |
+
"learning_rate": 2.4456047312542365e-07,
|
4090 |
+
"loss": 1.0155,
|
4091 |
+
"step": 3190
|
4092 |
+
},
|
4093 |
+
{
|
4094 |
+
"epoch": 2.8,
|
4095 |
+
"learning_rate": 2.3421766406827807e-07,
|
4096 |
+
"loss": 1.0085,
|
4097 |
+
"step": 3195
|
4098 |
+
},
|
4099 |
+
{
|
4100 |
+
"epoch": 2.8,
|
4101 |
+
"learning_rate": 2.2409572099207576e-07,
|
4102 |
+
"loss": 1.0039,
|
4103 |
+
"step": 3200
|
4104 |
+
},
|
4105 |
+
{
|
4106 |
+
"epoch": 2.8,
|
4107 |
+
"eval_loss": 1.114408254623413,
|
4108 |
+
"eval_runtime": 425.0695,
|
4109 |
+
"eval_samples_per_second": 38.031,
|
4110 |
+
"eval_steps_per_second": 1.19,
|
4111 |
+
"step": 3200
|
4112 |
+
},
|
4113 |
+
{
|
4114 |
+
"epoch": 2.81,
|
4115 |
+
"learning_rate": 2.1419487281784002e-07,
|
4116 |
+
"loss": 0.9914,
|
4117 |
+
"step": 3205
|
4118 |
+
},
|
4119 |
+
{
|
4120 |
+
"epoch": 2.81,
|
4121 |
+
"learning_rate": 2.045153434662428e-07,
|
4122 |
+
"loss": 1.0038,
|
4123 |
+
"step": 3210
|
4124 |
+
},
|
4125 |
+
{
|
4126 |
+
"epoch": 2.82,
|
4127 |
+
"learning_rate": 1.9505735185254226e-07,
|
4128 |
+
"loss": 0.9977,
|
4129 |
+
"step": 3215
|
4130 |
+
},
|
4131 |
+
{
|
4132 |
+
"epoch": 2.82,
|
4133 |
+
"learning_rate": 1.8582111188162555e-07,
|
4134 |
+
"loss": 1.0048,
|
4135 |
+
"step": 3220
|
4136 |
+
},
|
4137 |
+
{
|
4138 |
+
"epoch": 2.83,
|
4139 |
+
"learning_rate": 1.7680683244318154e-07,
|
4140 |
+
"loss": 1.0028,
|
4141 |
+
"step": 3225
|
4142 |
+
},
|
4143 |
+
{
|
4144 |
+
"epoch": 2.83,
|
4145 |
+
"learning_rate": 1.6801471740696462e-07,
|
4146 |
+
"loss": 1.0116,
|
4147 |
+
"step": 3230
|
4148 |
+
},
|
4149 |
+
{
|
4150 |
+
"epoch": 2.83,
|
4151 |
+
"learning_rate": 1.594449656181918e-07,
|
4152 |
+
"loss": 1.0002,
|
4153 |
+
"step": 3235
|
4154 |
+
},
|
4155 |
+
{
|
4156 |
+
"epoch": 2.84,
|
4157 |
+
"learning_rate": 1.510977708930461e-07,
|
4158 |
+
"loss": 1.0176,
|
4159 |
+
"step": 3240
|
4160 |
+
},
|
4161 |
+
{
|
4162 |
+
"epoch": 2.84,
|
4163 |
+
"learning_rate": 1.4297332201428703e-07,
|
4164 |
+
"loss": 0.9904,
|
4165 |
+
"step": 3245
|
4166 |
+
},
|
4167 |
+
{
|
4168 |
+
"epoch": 2.85,
|
4169 |
+
"learning_rate": 1.3507180272698594e-07,
|
4170 |
+
"loss": 1.025,
|
4171 |
+
"step": 3250
|
4172 |
+
},
|
4173 |
+
{
|
4174 |
+
"epoch": 2.85,
|
4175 |
+
"learning_rate": 1.2739339173436838e-07,
|
4176 |
+
"loss": 1.0045,
|
4177 |
+
"step": 3255
|
4178 |
+
},
|
4179 |
+
{
|
4180 |
+
"epoch": 2.86,
|
4181 |
+
"learning_rate": 1.1993826269377506e-07,
|
4182 |
+
"loss": 1.0145,
|
4183 |
+
"step": 3260
|
4184 |
+
},
|
4185 |
+
{
|
4186 |
+
"epoch": 2.86,
|
4187 |
+
"learning_rate": 1.1270658421273062e-07,
|
4188 |
+
"loss": 0.9961,
|
4189 |
+
"step": 3265
|
4190 |
+
},
|
4191 |
+
{
|
4192 |
+
"epoch": 2.86,
|
4193 |
+
"learning_rate": 1.0569851984513102e-07,
|
4194 |
+
"loss": 0.9992,
|
4195 |
+
"step": 3270
|
4196 |
+
},
|
4197 |
+
{
|
4198 |
+
"epoch": 2.87,
|
4199 |
+
"learning_rate": 9.89142280875477e-08,
|
4200 |
+
"loss": 1.0086,
|
4201 |
+
"step": 3275
|
4202 |
+
},
|
4203 |
+
{
|
4204 |
+
"epoch": 2.87,
|
4205 |
+
"learning_rate": 9.235386237564148e-08,
|
4206 |
+
"loss": 1.0101,
|
4207 |
+
"step": 3280
|
4208 |
+
},
|
4209 |
+
{
|
4210 |
+
"epoch": 2.88,
|
4211 |
+
"learning_rate": 8.601757108068876e-08,
|
4212 |
+
"loss": 0.9943,
|
4213 |
+
"step": 3285
|
4214 |
+
},
|
4215 |
+
{
|
4216 |
+
"epoch": 2.88,
|
4217 |
+
"learning_rate": 7.990549750623189e-08,
|
4218 |
+
"loss": 1.0004,
|
4219 |
+
"step": 3290
|
4220 |
+
},
|
4221 |
+
{
|
4222 |
+
"epoch": 2.89,
|
4223 |
+
"learning_rate": 7.401777988483406e-08,
|
4224 |
+
"loss": 1.0132,
|
4225 |
+
"step": 3295
|
4226 |
+
},
|
4227 |
+
{
|
4228 |
+
"epoch": 2.89,
|
4229 |
+
"learning_rate": 6.835455137495395e-08,
|
4230 |
+
"loss": 1.0,
|
4231 |
+
"step": 3300
|
4232 |
+
},
|
4233 |
+
{
|
4234 |
+
"epoch": 2.89,
|
4235 |
+
"eval_loss": 1.1143468618392944,
|
4236 |
+
"eval_runtime": 425.1593,
|
4237 |
+
"eval_samples_per_second": 38.023,
|
4238 |
+
"eval_steps_per_second": 1.19,
|
4239 |
+
"step": 3300
|
4240 |
+
},
|
4241 |
+
{
|
4242 |
+
"epoch": 2.9,
|
4243 |
+
"learning_rate": 6.2915940057936e-08,
|
4244 |
+
"loss": 0.9879,
|
4245 |
+
"step": 3305
|
4246 |
+
},
|
4247 |
+
{
|
4248 |
+
"epoch": 2.9,
|
4249 |
+
"learning_rate": 5.7702068935109324e-08,
|
4250 |
+
"loss": 0.9821,
|
4251 |
+
"step": 3310
|
4252 |
+
},
|
4253 |
+
{
|
4254 |
+
"epoch": 2.9,
|
4255 |
+
"learning_rate": 5.271305592501108e-08,
|
4256 |
+
"loss": 0.9954,
|
4257 |
+
"step": 3315
|
4258 |
+
},
|
4259 |
+
{
|
4260 |
+
"epoch": 2.91,
|
4261 |
+
"learning_rate": 4.794901386071749e-08,
|
4262 |
+
"loss": 1.0052,
|
4263 |
+
"step": 3320
|
4264 |
+
},
|
4265 |
+
{
|
4266 |
+
"epoch": 2.91,
|
4267 |
+
"learning_rate": 4.341005048728919e-08,
|
4268 |
+
"loss": 1.0061,
|
4269 |
+
"step": 3325
|
4270 |
+
},
|
4271 |
+
{
|
4272 |
+
"epoch": 2.92,
|
4273 |
+
"learning_rate": 3.9096268459339893e-08,
|
4274 |
+
"loss": 1.0068,
|
4275 |
+
"step": 3330
|
4276 |
+
},
|
4277 |
+
{
|
4278 |
+
"epoch": 2.92,
|
4279 |
+
"learning_rate": 3.50077653387082e-08,
|
4280 |
+
"loss": 1.0101,
|
4281 |
+
"step": 3335
|
4282 |
+
},
|
4283 |
+
{
|
4284 |
+
"epoch": 2.93,
|
4285 |
+
"learning_rate": 3.114463359225717e-08,
|
4286 |
+
"loss": 1.0068,
|
4287 |
+
"step": 3340
|
4288 |
+
},
|
4289 |
+
{
|
4290 |
+
"epoch": 2.93,
|
4291 |
+
"learning_rate": 2.7506960589781527e-08,
|
4292 |
+
"loss": 1.0072,
|
4293 |
+
"step": 3345
|
4294 |
+
},
|
4295 |
+
{
|
4296 |
+
"epoch": 2.93,
|
4297 |
+
"learning_rate": 2.4094828602027052e-08,
|
4298 |
+
"loss": 0.9931,
|
4299 |
+
"step": 3350
|
4300 |
+
},
|
4301 |
+
{
|
4302 |
+
"epoch": 2.94,
|
4303 |
+
"learning_rate": 2.0908314798836483e-08,
|
4304 |
+
"loss": 1.0091,
|
4305 |
+
"step": 3355
|
4306 |
+
},
|
4307 |
+
{
|
4308 |
+
"epoch": 2.94,
|
4309 |
+
"learning_rate": 1.7947491247399808e-08,
|
4310 |
+
"loss": 1.0162,
|
4311 |
+
"step": 3360
|
4312 |
+
},
|
4313 |
+
{
|
4314 |
+
"epoch": 2.95,
|
4315 |
+
"learning_rate": 1.5212424910627797e-08,
|
4316 |
+
"loss": 1.0119,
|
4317 |
+
"step": 3365
|
4318 |
+
},
|
4319 |
+
{
|
4320 |
+
"epoch": 2.95,
|
4321 |
+
"learning_rate": 1.2703177645634335e-08,
|
4322 |
+
"loss": 1.0053,
|
4323 |
+
"step": 3370
|
4324 |
+
},
|
4325 |
+
{
|
4326 |
+
"epoch": 2.96,
|
4327 |
+
"learning_rate": 1.0419806202336403e-08,
|
4328 |
+
"loss": 1.0044,
|
4329 |
+
"step": 3375
|
4330 |
+
},
|
4331 |
+
{
|
4332 |
+
"epoch": 2.96,
|
4333 |
+
"learning_rate": 8.362362222177345e-09,
|
4334 |
+
"loss": 1.008,
|
4335 |
+
"step": 3380
|
4336 |
+
},
|
4337 |
+
{
|
4338 |
+
"epoch": 2.97,
|
4339 |
+
"learning_rate": 6.530892236951136e-09,
|
4340 |
+
"loss": 0.9943,
|
4341 |
+
"step": 3385
|
4342 |
+
},
|
4343 |
+
{
|
4344 |
+
"epoch": 2.97,
|
4345 |
+
"learning_rate": 4.925437667755439e-09,
|
4346 |
+
"loss": 1.005,
|
4347 |
+
"step": 3390
|
4348 |
+
},
|
4349 |
+
{
|
4350 |
+
"epoch": 2.97,
|
4351 |
+
"learning_rate": 3.5460348240501376e-09,
|
4352 |
+
"loss": 0.9884,
|
4353 |
+
"step": 3395
|
4354 |
+
},
|
4355 |
+
{
|
4356 |
+
"epoch": 2.98,
|
4357 |
+
"learning_rate": 2.39271490284243e-09,
|
4358 |
+
"loss": 1.0188,
|
4359 |
+
"step": 3400
|
4360 |
+
},
|
4361 |
+
{
|
4362 |
+
"epoch": 2.98,
|
4363 |
+
"eval_loss": 1.114337682723999,
|
4364 |
+
"eval_runtime": 425.2781,
|
4365 |
+
"eval_samples_per_second": 38.013,
|
4366 |
+
"eval_steps_per_second": 1.19,
|
4367 |
+
"step": 3400
|
4368 |
+
},
|
4369 |
+
{
|
4370 |
+
"epoch": 2.98,
|
4371 |
+
"learning_rate": 1.4655039879740706e-09,
|
4372 |
+
"loss": 1.0096,
|
4373 |
+
"step": 3405
|
4374 |
+
},
|
4375 |
+
{
|
4376 |
+
"epoch": 2.99,
|
4377 |
+
"learning_rate": 7.644230495373884e-10,
|
4378 |
+
"loss": 1.0001,
|
4379 |
+
"step": 3410
|
4380 |
+
},
|
4381 |
+
{
|
4382 |
+
"epoch": 2.99,
|
4383 |
+
"learning_rate": 2.8948794339789255e-10,
|
4384 |
+
"loss": 1.0028,
|
4385 |
+
"step": 3415
|
4386 |
+
},
|
4387 |
+
{
|
4388 |
+
"epoch": 3.0,
|
4389 |
+
"learning_rate": 4.07094108345607e-11,
|
4390 |
+
"loss": 1.009,
|
4391 |
+
"step": 3420
|
4392 |
+
},
|
4393 |
+
{
|
4394 |
+
"epoch": 3.0,
|
4395 |
+
"step": 3423,
|
4396 |
+
"total_flos": 5.633765648992567e+18,
|
4397 |
+
"train_loss": 1.0902616986746403,
|
4398 |
+
"train_runtime": 47329.7113,
|
4399 |
+
"train_samples_per_second": 9.258,
|
4400 |
+
"train_steps_per_second": 0.072
|
4401 |
+
}
|
4402 |
+
],
|
4403 |
+
"logging_steps": 5,
|
4404 |
+
"max_steps": 3423,
|
4405 |
+
"num_input_tokens_seen": 0,
|
4406 |
+
"num_train_epochs": 3,
|
4407 |
+
"save_steps": 100,
|
4408 |
+
"total_flos": 5.633765648992567e+18,
|
4409 |
+
"train_batch_size": 16,
|
4410 |
+
"trial_name": null,
|
4411 |
+
"trial_params": null
|
4412 |
+
}
|