nyanko7 commited on
Commit
5fcd829
1 Parent(s): e9d8413

Upload 4 files

Browse files
Files changed (4) hide show
  1. example1.webp +0 -0
  2. example2.webp +0 -0
  3. example3.webp +0 -0
  4. inference.py +728 -0
example1.webp ADDED
example2.webp ADDED
example3.webp ADDED
inference.py ADDED
@@ -0,0 +1,728 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ from torchvision import transforms
4
+ from dataclasses import dataclass
5
+ import math
6
+ from typing import Callable
7
+
8
+ import torch
9
+ import random
10
+ from tqdm import tqdm
11
+ from einops import rearrange, repeat
12
+ from diffusers import AutoencoderKL
13
+ from torch import Tensor, nn
14
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
15
+ from safetensors.torch import load_file
16
+
17
+ # ---------------- Encoders ----------------
18
+
19
+ class HFEmbedder(nn.Module):
20
+ def __init__(self, version: str, max_length: int, **hf_kwargs):
21
+ super().__init__()
22
+ self.is_clip = version.startswith("openai")
23
+ self.max_length = max_length
24
+ self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
25
+
26
+ if self.is_clip:
27
+ self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
28
+ self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
29
+ else:
30
+ self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
31
+ self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
32
+
33
+ self.hf_module = self.hf_module.eval().requires_grad_(False)
34
+
35
+ def forward(self, text: list[str]) -> Tensor:
36
+ batch_encoding = self.tokenizer(
37
+ text,
38
+ truncation=True,
39
+ max_length=self.max_length,
40
+ return_length=False,
41
+ return_overflowing_tokens=False,
42
+ padding="max_length",
43
+ return_tensors="pt",
44
+ )
45
+
46
+ outputs = self.hf_module(
47
+ input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
48
+ attention_mask=None,
49
+ output_hidden_states=False,
50
+ )
51
+ return outputs[self.output_key]
52
+
53
+
54
+ device = "cuda"
55
+ t5 = HFEmbedder("DeepFloyd/t5-v1_1-xxl", max_length=512, torch_dtype=torch.bfloat16).to(device)
56
+ clip = HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
57
+ ae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
58
+ # quantize(t5, weights=qfloat8)
59
+ # freeze(t5)
60
+
61
+
62
+ # ---------------- Model ----------------
63
+
64
+
65
+ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
66
+ q, k = apply_rope(q, k, pe)
67
+
68
+ x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
69
+ # x = rearrange(x, "B H L D -> B L (H D)")
70
+ x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1)
71
+
72
+ return x
73
+
74
+
75
+ def rope(pos, dim, theta):
76
+ scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
77
+ omega = 1.0 / (theta ** scale)
78
+
79
+ # out = torch.einsum("...n,d->...nd", pos, omega)
80
+ out = pos.unsqueeze(-1) * omega.unsqueeze(0)
81
+
82
+ cos_out = torch.cos(out)
83
+ sin_out = torch.sin(out)
84
+ out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
85
+
86
+ # out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
87
+ b, n, d, _ = out.shape
88
+ out = out.view(b, n, d, 2, 2)
89
+
90
+ return out.float()
91
+
92
+
93
+ def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
94
+ xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
95
+ xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
96
+ xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
97
+ xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
98
+ return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
99
+
100
+
101
+ class EmbedND(nn.Module):
102
+ def __init__(self, dim: int, theta: int, axes_dim: list[int]):
103
+ super().__init__()
104
+ self.dim = dim
105
+ self.theta = theta
106
+ self.axes_dim = axes_dim
107
+
108
+ def forward(self, ids: Tensor) -> Tensor:
109
+ n_axes = ids.shape[-1]
110
+ emb = torch.cat(
111
+ [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
112
+ dim=-3,
113
+ )
114
+
115
+ return emb.unsqueeze(1)
116
+
117
+
118
+ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
119
+ """
120
+ Create sinusoidal timestep embeddings.
121
+ :param t: a 1-D Tensor of N indices, one per batch element.
122
+ These may be fractional.
123
+ :param dim: the dimension of the output.
124
+ :param max_period: controls the minimum frequency of the embeddings.
125
+ :return: an (N, D) Tensor of positional embeddings.
126
+ """
127
+ t = time_factor * t
128
+ half = dim // 2
129
+
130
+ # Do not block CUDA steam, but having about 1e-4 differences with Flux official codes:
131
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
132
+
133
+ # Block CUDA steam, but consistent with official codes:
134
+ # freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
135
+
136
+ args = t[:, None].float() * freqs[None]
137
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
138
+ if dim % 2:
139
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
140
+ if torch.is_floating_point(t):
141
+ embedding = embedding.to(t)
142
+ return embedding
143
+
144
+
145
+ class MLPEmbedder(nn.Module):
146
+ def __init__(self, in_dim: int, hidden_dim: int):
147
+ super().__init__()
148
+ self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
149
+ self.silu = nn.SiLU()
150
+ self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
151
+
152
+ def forward(self, x: Tensor) -> Tensor:
153
+ return self.out_layer(self.silu(self.in_layer(x)))
154
+
155
+
156
+ class RMSNorm(torch.nn.Module):
157
+ def __init__(self, dim: int):
158
+ super().__init__()
159
+ self.scale = nn.Parameter(torch.ones(dim))
160
+
161
+ def forward(self, x: Tensor):
162
+ x_dtype = x.dtype
163
+ x = x.float()
164
+ rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
165
+ return (x * rrms).to(dtype=x_dtype) * self.scale
166
+
167
+
168
+ class QKNorm(torch.nn.Module):
169
+ def __init__(self, dim: int):
170
+ super().__init__()
171
+ self.query_norm = RMSNorm(dim)
172
+ self.key_norm = RMSNorm(dim)
173
+
174
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
175
+ q = self.query_norm(q)
176
+ k = self.key_norm(k)
177
+ return q.to(v), k.to(v)
178
+
179
+
180
+ class SelfAttention(nn.Module):
181
+ def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
182
+ super().__init__()
183
+ self.num_heads = num_heads
184
+ head_dim = dim // num_heads
185
+
186
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
187
+ self.norm = QKNorm(head_dim)
188
+ self.proj = nn.Linear(dim, dim)
189
+
190
+ def forward(self, x: Tensor, pe: Tensor) -> Tensor:
191
+ qkv = self.qkv(x)
192
+ # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
193
+ B, L, _ = qkv.shape
194
+ qkv = qkv.view(B, L, 3, self.num_heads, -1)
195
+ q, k, v = qkv.permute(2, 0, 3, 1, 4)
196
+ q, k = self.norm(q, k, v)
197
+ x = attention(q, k, v, pe=pe)
198
+ x = self.proj(x)
199
+ return x
200
+
201
+
202
+ @dataclass
203
+ class ModulationOut:
204
+ shift: Tensor
205
+ scale: Tensor
206
+ gate: Tensor
207
+
208
+
209
+ class Modulation(nn.Module):
210
+ def __init__(self, dim: int, double: bool):
211
+ super().__init__()
212
+ self.is_double = double
213
+ self.multiplier = 6 if double else 3
214
+ self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
215
+
216
+ def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
217
+ out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
218
+
219
+ return (
220
+ ModulationOut(*out[:3]),
221
+ ModulationOut(*out[3:]) if self.is_double else None,
222
+ )
223
+
224
+
225
+ class DoubleStreamBlock(nn.Module):
226
+ def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
227
+ super().__init__()
228
+
229
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
230
+ self.num_heads = num_heads
231
+ self.hidden_size = hidden_size
232
+ self.img_mod = Modulation(hidden_size, double=True)
233
+ self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
234
+ self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
235
+
236
+ self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
237
+ self.img_mlp = nn.Sequential(
238
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
239
+ nn.GELU(approximate="tanh"),
240
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
241
+ )
242
+
243
+ self.txt_mod = Modulation(hidden_size, double=True)
244
+ self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
245
+ self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
246
+
247
+ self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
248
+ self.txt_mlp = nn.Sequential(
249
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
250
+ nn.GELU(approximate="tanh"),
251
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
252
+ )
253
+
254
+ def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
255
+ img_mod1, img_mod2 = self.img_mod(vec)
256
+ txt_mod1, txt_mod2 = self.txt_mod(vec)
257
+
258
+ # prepare image for attention
259
+ img_modulated = self.img_norm1(img)
260
+ img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
261
+ img_qkv = self.img_attn.qkv(img_modulated)
262
+ # img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
263
+ B, L, _ = img_qkv.shape
264
+ H = self.num_heads
265
+ D = img_qkv.shape[-1] // (3 * H)
266
+ img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
267
+ img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
268
+
269
+ # prepare txt for attention
270
+ txt_modulated = self.txt_norm1(txt)
271
+ txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
272
+ txt_qkv = self.txt_attn.qkv(txt_modulated)
273
+ # txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
274
+ B, L, _ = txt_qkv.shape
275
+ txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
276
+ txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
277
+
278
+ # run actual attention
279
+ q = torch.cat((txt_q, img_q), dim=2)
280
+ k = torch.cat((txt_k, img_k), dim=2)
281
+ v = torch.cat((txt_v, img_v), dim=2)
282
+
283
+ attn = attention(q, k, v, pe=pe)
284
+ txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
285
+
286
+ # calculate the img bloks
287
+ img = img + img_mod1.gate * self.img_attn.proj(img_attn)
288
+ img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
289
+
290
+ # calculate the txt bloks
291
+ txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
292
+ txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
293
+ return img, txt
294
+
295
+
296
+ class SingleStreamBlock(nn.Module):
297
+ """
298
+ A DiT block with parallel linear layers as described in
299
+ https://arxiv.org/abs/2302.05442 and adapted modulation interface.
300
+ """
301
+
302
+ def __init__(
303
+ self,
304
+ hidden_size: int,
305
+ num_heads: int,
306
+ mlp_ratio: float = 4.0,
307
+ qk_scale: float | None = None,
308
+ ):
309
+ super().__init__()
310
+ self.hidden_dim = hidden_size
311
+ self.num_heads = num_heads
312
+ head_dim = hidden_size // num_heads
313
+ self.scale = qk_scale or head_dim**-0.5
314
+
315
+ self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
316
+ # qkv and mlp_in
317
+ self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
318
+ # proj and mlp_out
319
+ self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
320
+
321
+ self.norm = QKNorm(head_dim)
322
+
323
+ self.hidden_size = hidden_size
324
+ self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
325
+
326
+ self.mlp_act = nn.GELU(approximate="tanh")
327
+ self.modulation = Modulation(hidden_size, double=False)
328
+
329
+ def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
330
+ mod, _ = self.modulation(vec)
331
+ x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
332
+ qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
333
+
334
+ # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
335
+ qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
336
+ q, k, v = qkv.permute(2, 0, 3, 1, 4)
337
+ q, k = self.norm(q, k, v)
338
+
339
+ # compute attention
340
+ attn = attention(q, k, v, pe=pe)
341
+ # compute activation in mlp stream, cat again and run second linear layer
342
+ output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
343
+ return x + mod.gate * output
344
+
345
+
346
+ class LastLayer(nn.Module):
347
+ def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
348
+ super().__init__()
349
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
350
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
351
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
352
+
353
+ def forward(self, x: Tensor, vec: Tensor) -> Tensor:
354
+ shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
355
+ x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
356
+ x = self.linear(x)
357
+ return x
358
+
359
+
360
+ class FluxParams:
361
+ in_channels: int = 64
362
+ vec_in_dim: int = 768
363
+ context_in_dim: int = 4096
364
+ hidden_size: int = 3072
365
+ mlp_ratio: float = 4.0
366
+ num_heads: int = 24
367
+ depth: int = 19
368
+ depth_single_blocks: int = 38
369
+ axes_dim: list = [16, 56, 56]
370
+ theta: int = 10_000
371
+ qkv_bias: bool = True
372
+ guidance_embed: bool = True
373
+
374
+
375
+ class Flux(nn.Module):
376
+ """
377
+ Transformer model for flow matching on sequences.
378
+ """
379
+
380
+ def __init__(self, params = FluxParams()):
381
+ super().__init__()
382
+
383
+ self.params = params
384
+ self.in_channels = params.in_channels
385
+ self.out_channels = self.in_channels
386
+ if params.hidden_size % params.num_heads != 0:
387
+ raise ValueError(
388
+ f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
389
+ )
390
+ pe_dim = params.hidden_size // params.num_heads
391
+ if sum(params.axes_dim) != pe_dim:
392
+ raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
393
+ self.hidden_size = params.hidden_size
394
+ self.num_heads = params.num_heads
395
+ self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
396
+ self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
397
+ self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
398
+ self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
399
+ # self.guidance_in = (
400
+ # MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
401
+ # )
402
+ self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
403
+
404
+ self.double_blocks = nn.ModuleList(
405
+ [
406
+ DoubleStreamBlock(
407
+ self.hidden_size,
408
+ self.num_heads,
409
+ mlp_ratio=params.mlp_ratio,
410
+ qkv_bias=params.qkv_bias,
411
+ )
412
+ for _ in range(params.depth)
413
+ ]
414
+ )
415
+
416
+ self.single_blocks = nn.ModuleList(
417
+ [
418
+ SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
419
+ for _ in range(params.depth_single_blocks)
420
+ ]
421
+ )
422
+
423
+ self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
424
+
425
+ def forward(
426
+ self,
427
+ img: Tensor,
428
+ img_ids: Tensor,
429
+ txt: Tensor,
430
+ txt_ids: Tensor,
431
+ timesteps: Tensor,
432
+ y: Tensor,
433
+ guidance: Tensor | None = None,
434
+ use_guidance_vec = True,
435
+ ) -> Tensor:
436
+ if img.ndim != 3 or txt.ndim != 3:
437
+ raise ValueError("Input img and txt tensors must have 3 dimensions.")
438
+
439
+ # running on sequences img
440
+ img = self.img_in(img)
441
+ vec = self.time_in(timestep_embedding(timesteps, 256))
442
+ # if self.params.guidance_embed and use_guidance_vec:
443
+ # if guidance is None:
444
+ # raise ValueError("Didn't get guidance strength for guidance distilled model.")
445
+ # vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
446
+ vec = vec + self.vector_in(y)
447
+ txt = self.txt_in(txt)
448
+
449
+ ids = torch.cat((txt_ids, img_ids), dim=1)
450
+ pe = self.pe_embedder(ids)
451
+
452
+ for block in self.double_blocks:
453
+ img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
454
+
455
+ img = torch.cat((txt, img), 1)
456
+ for block in self.single_blocks:
457
+ img = block(img, vec=vec, pe=pe)
458
+ img = img[:, txt.shape[1] :, ...]
459
+
460
+ img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
461
+ return img
462
+
463
+
464
+ def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
465
+ bs, c, h, w = img.shape
466
+ if bs == 1 and not isinstance(prompt, str):
467
+ bs = len(prompt)
468
+
469
+ img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
470
+ if img.shape[0] == 1 and bs > 1:
471
+ img = repeat(img, "1 ... -> bs ...", bs=bs)
472
+
473
+ img_ids = torch.zeros(h // 2, w // 2, 3)
474
+ img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
475
+ img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
476
+ img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
477
+
478
+ if isinstance(prompt, str):
479
+ prompt = [prompt]
480
+ txt = t5(prompt)
481
+ if txt.shape[0] == 1 and bs > 1:
482
+ txt = repeat(txt, "1 ... -> bs ...", bs=bs)
483
+ txt_ids = torch.zeros(bs, txt.shape[1], 3)
484
+
485
+ vec = clip(prompt)
486
+ if vec.shape[0] == 1 and bs > 1:
487
+ vec = repeat(vec, "1 ... -> bs ...", bs=bs)
488
+
489
+ return {
490
+ "img": img,
491
+ "img_ids": img_ids.to(img.device),
492
+ "txt": txt.to(img.device),
493
+ "txt_ids": txt_ids.to(img.device),
494
+ "vec": vec.to(img.device),
495
+ }
496
+
497
+
498
+ def time_shift(mu: float, sigma: float, t: Tensor):
499
+ return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
500
+
501
+
502
+ def get_lin_function(
503
+ x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
504
+ ) -> Callable[[float], float]:
505
+ m = (y2 - y1) / (x2 - x1)
506
+ b = y1 - m * x1
507
+ return lambda x: m * x + b
508
+
509
+
510
+ def get_schedule(
511
+ num_steps: int,
512
+ image_seq_len: int,
513
+ base_shift: float = 0.5,
514
+ max_shift: float = 1.15,
515
+ shift: bool = True,
516
+ ) -> list[float]:
517
+ # extra step for zero
518
+ timesteps = torch.linspace(1, 0, num_steps + 1)
519
+
520
+ # shifting the schedule to favor high timesteps for higher signal images
521
+ if shift:
522
+ # eastimate mu based on linear estimation between two points
523
+ mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
524
+ timesteps = time_shift(mu, 1.0, timesteps)
525
+
526
+ return timesteps.tolist()
527
+
528
+
529
+ def denoise(
530
+ model: Flux,
531
+ # model input
532
+ img: Tensor,
533
+ img_ids: Tensor,
534
+ txt: Tensor,
535
+ txt_ids: Tensor,
536
+ vec: Tensor,
537
+ # sampling parameters
538
+ timesteps: list[float],
539
+ guidance: float = 4.0,
540
+ use_cfg_guidance = False,
541
+ ):
542
+ # this is ignored for schnell
543
+ guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
544
+ for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:])):
545
+ t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
546
+
547
+ if use_cfg_guidance:
548
+ half_x = img[:len(img)//2]
549
+ img = torch.cat([half_x, half_x], dim=0)
550
+ t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
551
+
552
+ pred = model(
553
+ img=img,
554
+ img_ids=img_ids,
555
+ txt=txt,
556
+ txt_ids=txt_ids,
557
+ y=vec,
558
+ timesteps=t_vec,
559
+ guidance=guidance_vec,
560
+ use_guidance_vec=not use_cfg_guidance,
561
+ )
562
+
563
+ if use_cfg_guidance:
564
+ uncond, cond = pred.chunk(2, dim=0)
565
+ model_output = uncond + guidance * (cond - uncond)
566
+ pred = torch.cat([model_output, model_output], dim=0)
567
+
568
+ img = img + (t_prev - t_curr) * pred
569
+
570
+ return img
571
+
572
+
573
+ def unpack(x: Tensor, height: int, width: int) -> Tensor:
574
+ return rearrange(
575
+ x,
576
+ "b (h w) (c ph pw) -> b c (h ph) (w pw)",
577
+ h=math.ceil(height / 16),
578
+ w=math.ceil(width / 16),
579
+ ph=2,
580
+ pw=2,
581
+ )
582
+
583
+ @dataclass
584
+ class SamplingOptions:
585
+ prompt: str
586
+ width: int
587
+ height: int
588
+ guidance: float
589
+ seed: int | None
590
+
591
+
592
+ def get_image(image) -> torch.Tensor | None:
593
+ if image is None:
594
+ return None
595
+ image = Image.fromarray(image).convert("RGB")
596
+
597
+ transform = transforms.Compose([
598
+ transforms.ToTensor(),
599
+ transforms.Lambda(lambda x: 2.0 * x - 1.0),
600
+ ])
601
+ img: torch.Tensor = transform(image)
602
+ return img[None, ...]
603
+
604
+
605
+ # ---------------- Demo ----------------
606
+
607
+
608
+ class EmptyInitWrapper(torch.overrides.TorchFunctionMode):
609
+ def __init__(self, device=None):
610
+ self.device = device
611
+
612
+ def __torch_function__(self, func, types, args=(), kwargs=None):
613
+ kwargs = kwargs or {}
614
+ if getattr(func, "__module__", None) == "torch.nn.init":
615
+ if "tensor" in kwargs:
616
+ return kwargs["tensor"]
617
+ else:
618
+ return args[0]
619
+ if (
620
+ self.device is not None
621
+ and func in torch.utils._device._device_constructors()
622
+ and kwargs.get("device") is None
623
+ ):
624
+ kwargs["device"] = self.device
625
+ return func(*args, **kwargs)
626
+
627
+ with EmptyInitWrapper():
628
+ model = Flux().to(dtype=torch.bfloat16, device="cuda")
629
+ sd = load_file("./consolidated_s6700.safetensors")
630
+ sd = {k.replace("model.", ""): v for k, v in sd.items()}
631
+ result = model.load_state_dict(sd)
632
+
633
+ @torch.no_grad()
634
+ def generate_image(
635
+ prompt, neg_prompt, width, height, guidance, seed,
636
+ do_img2img, init_image, image2image_strength, resize_img,
637
+ progress=gr.Progress(track_tqdm=True),
638
+ ):
639
+ if seed == 0:
640
+ seed = int(random.random() * 1000000)
641
+
642
+ device = "cuda" if torch.cuda.is_available() else "cpu"
643
+ torch_device = torch.device(device)
644
+
645
+ if do_img2img and init_image is not None:
646
+ init_image = get_image(init_image)
647
+ if resize_img:
648
+ init_image = torch.nn.functional.interpolate(init_image, (height, width))
649
+ else:
650
+ h, w = init_image.shape[-2:]
651
+ init_image = init_image[..., : 16 * (h // 16), : 16 * (w // 16)]
652
+ height = init_image.shape[-2]
653
+ width = init_image.shape[-1]
654
+ init_image = ae.encode(init_image.to(torch_device)).latent_dist.sample()
655
+ init_image = (init_image - ae.config.shift_factor) * ae.config.scaling_factor
656
+
657
+ generator = torch.Generator(device=device).manual_seed(seed)
658
+ x = torch.randn(1, 16, 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=torch.bfloat16, generator=generator)
659
+
660
+ num_steps = 28
661
+ timesteps = get_schedule(num_steps, (x.shape[-1] * x.shape[-2]) // 4, shift=True)
662
+
663
+ if do_img2img and init_image is not None:
664
+ t_idx = int((1 - image2image_strength) * num_steps)
665
+ t = timesteps[t_idx]
666
+ timesteps = timesteps[t_idx:]
667
+ x = t * x + (1.0 - t) * init_image.to(x.dtype)
668
+
669
+ inp = prepare(t5=t5, clip=clip, img=x, prompt=[neg_prompt, prompt])
670
+ x = denoise(model, **inp, timesteps=timesteps, guidance=guidance, use_cfg_guidance=True)
671
+
672
+ # with profile(activities=[ProfilerActivity.CPU],record_shapes=True,profile_memory=True) as prof:
673
+ # print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=20))
674
+
675
+ x = unpack(x.float(), height, width)
676
+ with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
677
+ x = x = (x / ae.config.scaling_factor) + ae.config.shift_factor
678
+ x = ae.decode(x).sample
679
+
680
+ x = x.clamp(-1, 1)
681
+ x = rearrange(x[0], "c h w -> h w c")
682
+ img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
683
+
684
+ return img, seed
685
+
686
+ def create_demo():
687
+ with gr.Blocks(theme="bethecloud/storj_theme") as demo:
688
+ with gr.Row():
689
+ with gr.Column():
690
+ prompt = gr.Textbox(label="Prompt", value="a photo of a forest with mist swirling around the tree trunks. The word 'FLUX' is painted over it in big, red brush strokes with visible texture")
691
+ neg_prompt = gr.Textbox(label="Negative Prompt", value="bad photo")
692
+ width = gr.Slider(minimum=128, maximum=2048, step=64, label="Width", value=1360)
693
+ height = gr.Slider(minimum=128, maximum=2048, step=64, label="Height", value=768)
694
+ guidance = gr.Slider(minimum=1.0, maximum=5.0, step=0.1, label="Guidance", value=3.5)
695
+ seed = gr.Number(label="Seed", precision=-1)
696
+ do_img2img = gr.Checkbox(label="Image to Image", value=False)
697
+ init_image = gr.Image(label="Input Image", visible=False)
698
+ image2image_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Noising strength", value=0.8, visible=False)
699
+ resize_img = gr.Checkbox(label="Resize image", value=True, visible=False)
700
+ generate_button = gr.Button("Generate")
701
+
702
+ with gr.Column():
703
+ output_image = gr.Image(label="Generated Image")
704
+ output_seed = gr.Text(label="Used Seed")
705
+
706
+ do_img2img.change(
707
+ fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
708
+ inputs=[do_img2img],
709
+ outputs=[init_image, image2image_strength, resize_img]
710
+ )
711
+
712
+ generate_button.click(
713
+ fn=generate_image,
714
+ inputs=[prompt, neg_prompt, width, height, guidance, seed, do_img2img, init_image, image2image_strength, resize_img],
715
+ outputs=[output_image, output_seed]
716
+ )
717
+
718
+ examples = [
719
+ "a tiny astronaut hatching from an egg on the moon",
720
+ "a cat holding a sign that says hello world",
721
+ "an anime illustration of a wiener schnitzel",
722
+ ]
723
+
724
+ return demo
725
+
726
+ if __name__ == "__main__":
727
+ demo = create_demo()
728
+ demo.launch(share=True)