NeMo
Chris-Alexiuk commited on
Commit
ac75bfb
1 Parent(s): c0c093e

Update Nemo FW References

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -40,7 +40,7 @@ Nemotron-4-340B-Instruct is a chat model intended for use for the English langua
40
 
41
  Nemotron-4-340B-Instruct is designed for Synthetic Data Generation to enable developers and enterprises for building and customizing their own large language models and LLM applications.
42
 
43
- The instruct model itself can be further customized using the [NeMo Framework](https://docs.nvidia.com/nemo-framework/index.html) suite of customization tools including Parameter-Efficient Fine-Tuning (P-tuning, Adapters, LoRA, and more), and Model Alignment (SFT, SteerLM, RLHF, and more) using [NeMo-Aligner](https://github.com/NVIDIA/NeMo-Aligner).
44
 
45
  **Model Developer:** NVIDIA
46
 
@@ -156,7 +156,7 @@ if response.endswith("<extra_id_1>"):
156
  print(response)
157
  ```
158
 
159
- 2. Given this Python script, create a Bash script which spins up the inference server within the [NeMo container](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nemo) (```docker pull nvcr.io/nvidia/nemo:24.01.framework```) and calls the Python script ``call_server.py``. The Bash script ``nemo_inference.sh`` is as follows,
160
 
161
  ```bash
162
  NEMO_FILE=$1
@@ -221,7 +221,7 @@ RESULTS=<PATH_TO_YOUR_SCRIPTS_FOLDER>
221
  OUTFILE="${RESULTS}/slurm-%j-%n.out"
222
  ERRFILE="${RESULTS}/error-%j-%n.out"
223
  MODEL=<PATH_TO>/Nemotron-4-340B-Instruct
224
- CONTAINER="nvcr.io/nvidia/nemo:24.01.framework"
225
  MOUNTS="--container-mounts=<PATH_TO_YOUR_SCRIPTS_FOLDER>:/scripts,MODEL:/model"
226
 
227
  read -r -d '' cmd <<EOF
 
40
 
41
  Nemotron-4-340B-Instruct is designed for Synthetic Data Generation to enable developers and enterprises for building and customizing their own large language models and LLM applications.
42
 
43
+ The instruct model itself can be further customized using the [NeMo Framework](https://docs.nvidia.com/nemo-framework/index.html) suite of customization tools including Parameter-Efficient Fine-Tuning (P-tuning, Adapters, LoRA, and more), and Model Alignment (SFT, SteerLM, RLHF, and more) using [NeMo-Aligner](https://github.com/NVIDIA/NeMo-Aligner). Refer to the [documentation](https://docs.nvidia.com/nemo-framework/user-guide/latest/llms/nemotron/index.html) for examples.
44
 
45
  **Model Developer:** NVIDIA
46
 
 
156
  print(response)
157
  ```
158
 
159
+ 2. Given this Python script, create a Bash script which spins up the inference server within the [NeMo container](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nemo) (```docker pull nvcr.io/nvidia/nemo:24.05```) and calls the Python script ``call_server.py``. The Bash script ``nemo_inference.sh`` is as follows,
160
 
161
  ```bash
162
  NEMO_FILE=$1
 
221
  OUTFILE="${RESULTS}/slurm-%j-%n.out"
222
  ERRFILE="${RESULTS}/error-%j-%n.out"
223
  MODEL=<PATH_TO>/Nemotron-4-340B-Instruct
224
+ CONTAINER="nvcr.io/nvidia/nemo:24.05"
225
  MOUNTS="--container-mounts=<PATH_TO_YOUR_SCRIPTS_FOLDER>:/scripts,MODEL:/model"
226
 
227
  read -r -d '' cmd <<EOF