[tool.poetry] name = "cleanrl" version = "2.0.0b1" description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features" authors = ["Costa Huang "] packages = [ { include = "cleanrl" }, { include = "cleanrl_utils" }, ] keywords = ["reinforcement", "machine", "learning", "research"] license="MIT" readme = "README.md" [tool.poetry.dependencies] python = ">=3.8,<3.11" tensorboard = "^2.10.0" wandb = "^0.13.11" gym = "0.23.1" torch = ">=1.12.1" stable-baselines3 = "2.0.0" gymnasium = ">=0.28.1" moviepy = "^1.0.3" pygame = "2.1.0" huggingface-hub = "^0.11.1" rich = "<12.0" tenacity = "^8.2.2" tyro = "^0.5.10" pyyaml = "^6.0.1" ale-py = {version = "0.8.1", optional = true} AutoROM = {extras = ["accept-rom-license"], version = "~0.4.2", optional = true} opencv-python = {version = "^4.6.0.66", optional = true} procgen = {version = "^0.10.7", optional = true} pytest = {version = "^7.1.3", optional = true} mujoco = {version = "<=2.3.3", optional = true} imageio = {version = "^2.14.1", optional = true} mkdocs-material = {version = "^8.4.3", optional = true} markdown-include = {version = "^0.7.0", optional = true} openrlbenchmark = {version = "^0.1.1b4", optional = true} jax = {version = "0.4.8", optional = true} jaxlib = {version = "0.4.7", optional = true} flax = {version = "0.6.8", optional = true} optuna = {version = "^3.0.1", optional = true} optuna-dashboard = {version = "^0.7.2", optional = true} envpool = {version = "^0.6.4", optional = true} PettingZoo = {version = "1.18.1", optional = true} SuperSuit = {version = "3.4.0", optional = true} multi-agent-ale-py = {version = "0.1.11", optional = true} boto3 = {version = "^1.24.70", optional = true} awscli = {version = "^1.31.0", optional = true} shimmy = {version = ">=1.1.0", optional = true} dm-control = {version = ">=1.0.10", optional = true} h5py = {version = ">=3.7.0", optional = true} optax = {version = "0.1.4", optional = true} chex = {version = "0.1.5", optional = true} numpy = ">=1.21.6" [tool.poetry.group.dev.dependencies] pre-commit = "^2.20.0" [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" [tool.poetry.extras] atari = ["ale-py", "AutoROM", "opencv-python", "shimmy"] procgen = ["procgen"] plot = ["pandas", "seaborn"] pytest = ["pytest"] mujoco = ["mujoco", "imageio"] jax = ["jax", "jaxlib", "flax"] docs = ["mkdocs-material", "markdown-include", "openrlbenchmark"] envpool = ["envpool"] optuna = ["optuna", "optuna-dashboard"] pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"] cloud = ["boto3", "awscli"] dm_control = ["shimmy", "mujoco", "dm-control", "h5py"] # dependencies for algorithm variant (useful when you want to run a specific algorithm) dqn = [] dqn_atari = ["ale-py", "AutoROM", "opencv-python"] dqn_jax = ["jax", "jaxlib", "flax"] dqn_atari_jax = [ "ale-py", "AutoROM", "opencv-python", # atari "jax", "jaxlib", "flax" # jax ] c51 = [] c51_atari = ["ale-py", "AutoROM", "opencv-python"] c51_jax = ["jax", "jaxlib", "flax"] c51_atari_jax = [ "ale-py", "AutoROM", "opencv-python", # atari "jax", "jaxlib", "flax" # jax ] ppo_atari_envpool_xla_jax_scan = [ "ale-py", "AutoROM", "opencv-python", # atari "jax", "jaxlib", "flax", # jax "envpool", # envpool ] qdagger_dqn_atari_impalacnn = [ "ale-py", "AutoROM", "opencv-python" ] qdagger_dqn_atari_jax_impalacnn = [ "ale-py", "AutoROM", "opencv-python", # atari "jax", "jaxlib", "flax", # jax ]