nomsgadded
commited on
Commit
•
535d235
1
Parent(s):
85845b8
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -26.85 +/- 21.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6704ea9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6704eaa60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6704eaaf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6704eab80>", "_build": "<function ActorCriticPolicy._build at 0x7fd6704eac10>", "forward": "<function ActorCriticPolicy.forward at 0x7fd6704eaca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd6704ead30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6704eadc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd6704eae50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6704eaee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6704eaf70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6704ee040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd670566d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 200192, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696215712230671915, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAPn5b68Png9OhUyv2Rbt7wc3Au76ZCtvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0009600000000000719, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEM3BVMmF8KMAWyUTRsBjAF0lEdAYq2e4kNWl3V9lChoBkdAbw4VuaWonGgHTdcBaAhHQGKzySeRPoF1fZQoaAZHQE3ZfhMrVe9oB0vtaAhHQGK24CQtBfN1fZQoaAZHQCHYh+vyLAJoB0v6aAhHQGK6JOFg2Ih1fZQoaAZHwChnARChN/RoB0vOaAhHQGK86jFhodx1fZQoaAZHwAH9CVrylN1oB0vJaAhHQGK/iHqNZNh1fZQoaAZHQHBSFERaouRoB00SAmgIR0Bixmt4iX6ZdX2UKGgGR0Awy8VHnU2DaAdLumgIR0BiyK1JDmbLdX2UKGgGR0BAqeOfdyksaAdNCgFoCEdAYswbwSamXXV9lChoBkfALAmA08/2TWgHTQIBaAhHQGLPc4YJmd11fZQoaAZHQEe9o6jnFHdoB0uFaAhHQGLRVKPGQ0Z1fZQoaAZHQG7Q+zD4xlBoB01SAWgIR0Bi1a0ngHeKdX2UKGgGR8AoyRRMvh60aAdNEgFoCEdAYtkx20Re1XV9lChoBkdAaR4Oskpqh2gHTWUBaAhHQGLd+6qbSZ11fZQoaAZHwD5NLBbfP5ZoB0vuaAhHQGLhOfmLcbl1fZQoaAZHwD5SZLIxQBRoB0voaAhHQGLkW8AaNuN1fZQoaAZHwFAAnGsFMZhoB01RAWgIR0Bi6LMNc4YKdX2UKGgGR8AzyJo0ygwoaAdL2WgIR0Bi640Kqn3tdX2UKGgGR8BHOJ9qk/KRaAdL/WgIR0Bi7tRceKbbdX2UKGgGR0Ahl+MIeHSGaAdLxWgIR0Bi8WmrKeTWdX2UKGgGR0A+uWQOnVG1aAdNCwFoCEdAYvTayKNyYHV9lChoBkdAbb/AkcCHRGgHTacBaAhHQGL6OG0u14R1fZQoaAZHQDQDllsguAZoB0vVaAhHQGL9A/keZG91fZQoaAZHwCKI+KTB68hoB00cAWgIR0BjAKs0YTCcdX2UKGgGR0BuJ9u3trsTaAdNcAFoCEdAYwWWgvlEJHV9lChoBkdALAjk+5e7c2gHS9NoCEdAYwgml67dznV9lChoBkfANR09ECvHLmgHS9FoCEdAYwrpdKNADHV9lChoBkdAAK7T2FnIyWgHTQIBaAhHQGMOS/9Hc1x1fZQoaAZHQD+Ztm+TNdJoB01OAWgIR0BjEsLfDUExdX2UKGgGR0AV6gzxgAp8aAdNXwFoCEdAYxc7Rv3rU3V9lChoBkdAa6W0rK/202gHTesBaAhHQGMdnavicXp1fZQoaAZHwBazLr5ZbINoB0vJaAhHQGMgPL5hz/91fZQoaAZHQGjzerELpiZoB03WAWgIR0BjJh6By0a7dX2UKGgGR0BubUcuJ1q4aAdNRgFoCEdAYyqG6f8Mu3V9lChoBkdAcGq8v24/eWgHTWIBaAhHQGMvAOavzOJ1fZQoaAZHQE7UpOvdM0xoB0vwaAhHQGMyIOQQtjF1fZQoaAZHQGt/xNyo4uNoB008AmgIR0BjOYVRDTjOdX2UKGgGR8Aw3JNTLns+aAdL/mgIR0BjPNJDmbLEdX2UKGgGR0Bsthb4agmJaAdNBwJoCEdAY0OJb+tKZnV9lChoBkfAPyzEBKcurmgHTSQBaAhHQGNHUUoKD011fZQoaAZHQBxxP9DQZ4xoB012AWgIR0BjTEvGp++edX2UKGgGR0BmwYM8YAKfaAdN/wFoCEdAY1LqoIfKZHV9lChoBkdAbSa57w8W9GgHTRwCaAhHQGNZ2bgCOm11fZQoaAZHQGkdG5c1O0toB026AWgIR0BjX8BMi8nNdX2UKGgGR0Bq2l0V8CxNaAdN0gFoCEdAY2W35N47inV9lChoBkdAa1x8Rcu8LGgHTZUBaAhHQGNq0XP7el91fZQoaAZHwG6XIQnQY1poB02aAWgIR0BjcDFqBVdYdX2UKGgGR8AxPz3AVO9GaAdNsAFoCEdAY3WJJoTPB3V9lChoBkdAb8nfCyhSL2gHTQUCaAhHQGN8JYLb5/N1fZQoaAZHQApNdAxBVuJoB03kAWgIR0BjgnOQhfShdX2UKGgGR0A1ZRq46Oo6aAdL32gIR0BjhW7HyVfNdX2UKGgGR0BpMJx1gYxdaAdNiQJoCEdAY44j/MnqmnV9lChoBkfAFMQ+EAYHgWgHTbYBaAhHQGOTkFW4mTl1fZQoaAZHQEhEL5RCQcRoB0vXaAhHQGOWbtRekYZ1fZQoaAZHwC5U8eS0Sh9oB00iAWgIR0Bjmik0rK/3dX2UKGgGR0BtmCwSrYGuaAdN/wFoCEdAY6DC9h7VrnV9lChoBkdAamSr8zhxYWgHTQQCaAhHQGOncbrC3w11fZQoaAZHQG0T/6O5rgxoB00pAmgIR0BjrtZcLSeAdX2UKGgGR0BsbKG1x82KaAdN8wFoCEdAY7VRnezlcXV9lChoBkdAazS0GeMAFWgHTWsCaAhHQGO9P5P/JeV1fZQoaAZHQGojX4bjtHBoB01hAmgIR0BjxQVTJhfCdX2UKGgGR8A2xMcIZ62OaAdNMAFoCEdAY8kd9Ujs2XV9lChoBkdAbqZ4oJAt4GgHTZ0BaAhHQGPOYe9zwMJ1fZQoaAZHwB0MiW3Sa3JoB02sAWgIR0Bj0/6j3225dX2UKGgGR8BA7pC8e0XxaAdNLQFoCEdAY9fewcHW0HV9lChoBkfAWLHPD50r9WgHS+doCEdAY9rnCfpUxXV9lChoBkdAayUZWq94/2gHTcQBaAhHQGPgxKYiPhh1fZQoaAZHQGhgROUMXrNoB02oAWgIR0Bj5iWRigCfdX2UKGgGR0BruaF9KEnLaAdNVAFoCEdAY+q0Mw1zhnV9lChoBkdAOkw1NxlxwWgHTU4BaAhHQGPu+kP+XJJ1fZQoaAZHQHBq4Ma0hNdoB03DAWgIR0Bj9OV7hNucdX2UKGgGR8BLz08eS0SiaAdNmwFoCEdAY/oSSNfgJnV9lChoBkfAFL1WKdhAnmgHTXwBaAhHQGP/LaM72ct1fZQoaAZHwGaxReLNwBJoB03ZAWgIR0BkBWIKtxMndX2UKGgGR0BnP8s6JZW8aAdNSQJoCEdAZA0Jl8PWhHV9lChoBkdAN9utOmBOHmgHTW4BaAhHQGQRsOXmeUZ1fZQoaAZHQGsufSQYDT1oB005AmgIR0BkGTKA8SwodX2UKGgGR0BsyTtw71ZlaAdNTwJoCEdAZCDdWQwK0HV9lChoBkdAca1k3S8aoGgHTWUBaAhHQGQlamoBJZp1fZQoaAZHQGuTqu0TlDFoB03HAWgIR0BkK2wTufEodX2UKGgGR7/z80P6KtPpaAdNGgFoCEdAZC8PkJa7mXV9lChoBkdAcWD65Gz8g2gHTe4BaAhHQGQ1gvDgqEx1fZQoaAZHwELVjPOY6XBoB01jAWgIR0BkOf1xsEaEdX2UKGgGR8AgLxYJVsDXaAdNMwFoCEdAZD4h1Tzd13V9lChoBkdAa8nZrYXfqGgHTZsBaAhHQGRDZzYEnst1fZQoaAZHQGVBWcz67/ZoB03AAmgIR0BkTKp71Iy1dX2UKGgGR8BB70Zm7J4jaAdNQQFoCEdAZFDBMSK3u3V9lChoBkdADByPMjeKsWgHS9NoCEdAZFOLE1l5GHV9lChoBkfAEOyMDOkcj2gHTS0BaAhHQGRXeso2GZh1fZQoaAZHwGOSQ5NoJzFoB0uzaAhHQGRZ38n/kvN1fZQoaAZHQGRmSuQp4KRoB01+AWgIR0BkXsP6KtPpdX2UKGgGR0AK3iJfpljFaAdNLQFoCEdAZGLWpZOi4HV9lChoBkdAchaqC6H0smgHTVcBaAhHQGRnPbO/tY11fZQoaAZHwEtflnyup0hoB0v4aAhHQGRqexW1c+t1fZQoaAZHQCoBEjPfKp1oB01HAWgIR0BkbqBbwBo3dX2UKGgGR0A6DTjNpudgaAdNIQFoCEdAZHJV6u4gBHV9lChoBkdAbhfYywfQr2gHTUMBaAhHQGR2seXAuZl1fZQoaAZHQGxl1eBxxT9oB02sAWgIR0BkfCW3Sa3JdX2UKGgGR0A+KEa2nbZfaAdNJgFoCEdAZH/3vhIe5nV9lChoBkdANFuP7vXsgWgHTSUBaAhHQGSD8Bltj1B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 256, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 1024, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3N5c2NvbWFjaC8uY29uZGEvZW52cy9STC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc3lzY29tYWNoLy5jb25kYS9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3N5c2NvbWFjaC8uY29uZGEvZW52cy9STC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc3lzY29tYWNoLy5jb25kYS9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.2.0-33-generic-x86_64-with-glibc2.17 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Sep 7 10:33:52 UTC 2", "Python": "3.8.18", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f59f514a0fdf412f641185b02a807de21008472981c7483178207e79ad735951
|
3 |
+
size 146180
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd6704ea9d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd6704eaa60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd6704eaaf0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd6704eab80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd6704eac10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd6704eaca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd6704ead30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd6704eadc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd6704eae50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd6704eaee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd6704eaf70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd6704ee040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fd670566d80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 200192,
|
25 |
+
"_total_timesteps": 200000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1696215712230671915,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAPn5b68Png9OhUyv2Rbt7wc3Au76ZCtvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0009600000000000719,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEM3BVMmF8KMAWyUTRsBjAF0lEdAYq2e4kNWl3V9lChoBkdAbw4VuaWonGgHTdcBaAhHQGKzySeRPoF1fZQoaAZHQE3ZfhMrVe9oB0vtaAhHQGK24CQtBfN1fZQoaAZHQCHYh+vyLAJoB0v6aAhHQGK6JOFg2Ih1fZQoaAZHwChnARChN/RoB0vOaAhHQGK86jFhodx1fZQoaAZHwAH9CVrylN1oB0vJaAhHQGK/iHqNZNh1fZQoaAZHQHBSFERaouRoB00SAmgIR0Bixmt4iX6ZdX2UKGgGR0Awy8VHnU2DaAdLumgIR0BiyK1JDmbLdX2UKGgGR0BAqeOfdyksaAdNCgFoCEdAYswbwSamXXV9lChoBkfALAmA08/2TWgHTQIBaAhHQGLPc4YJmd11fZQoaAZHQEe9o6jnFHdoB0uFaAhHQGLRVKPGQ0Z1fZQoaAZHQG7Q+zD4xlBoB01SAWgIR0Bi1a0ngHeKdX2UKGgGR8AoyRRMvh60aAdNEgFoCEdAYtkx20Re1XV9lChoBkdAaR4Oskpqh2gHTWUBaAhHQGLd+6qbSZ11fZQoaAZHwD5NLBbfP5ZoB0vuaAhHQGLhOfmLcbl1fZQoaAZHwD5SZLIxQBRoB0voaAhHQGLkW8AaNuN1fZQoaAZHwFAAnGsFMZhoB01RAWgIR0Bi6LMNc4YKdX2UKGgGR8AzyJo0ygwoaAdL2WgIR0Bi640Kqn3tdX2UKGgGR8BHOJ9qk/KRaAdL/WgIR0Bi7tRceKbbdX2UKGgGR0Ahl+MIeHSGaAdLxWgIR0Bi8WmrKeTWdX2UKGgGR0A+uWQOnVG1aAdNCwFoCEdAYvTayKNyYHV9lChoBkdAbb/AkcCHRGgHTacBaAhHQGL6OG0u14R1fZQoaAZHQDQDllsguAZoB0vVaAhHQGL9A/keZG91fZQoaAZHwCKI+KTB68hoB00cAWgIR0BjAKs0YTCcdX2UKGgGR0BuJ9u3trsTaAdNcAFoCEdAYwWWgvlEJHV9lChoBkdALAjk+5e7c2gHS9NoCEdAYwgml67dznV9lChoBkfANR09ECvHLmgHS9FoCEdAYwrpdKNADHV9lChoBkdAAK7T2FnIyWgHTQIBaAhHQGMOS/9Hc1x1fZQoaAZHQD+Ztm+TNdJoB01OAWgIR0BjEsLfDUExdX2UKGgGR0AV6gzxgAp8aAdNXwFoCEdAYxc7Rv3rU3V9lChoBkdAa6W0rK/202gHTesBaAhHQGMdnavicXp1fZQoaAZHwBazLr5ZbINoB0vJaAhHQGMgPL5hz/91fZQoaAZHQGjzerELpiZoB03WAWgIR0BjJh6By0a7dX2UKGgGR0BubUcuJ1q4aAdNRgFoCEdAYyqG6f8Mu3V9lChoBkdAcGq8v24/eWgHTWIBaAhHQGMvAOavzOJ1fZQoaAZHQE7UpOvdM0xoB0vwaAhHQGMyIOQQtjF1fZQoaAZHQGt/xNyo4uNoB008AmgIR0BjOYVRDTjOdX2UKGgGR8Aw3JNTLns+aAdL/mgIR0BjPNJDmbLEdX2UKGgGR0Bsthb4agmJaAdNBwJoCEdAY0OJb+tKZnV9lChoBkfAPyzEBKcurmgHTSQBaAhHQGNHUUoKD011fZQoaAZHQBxxP9DQZ4xoB012AWgIR0BjTEvGp++edX2UKGgGR0BmwYM8YAKfaAdN/wFoCEdAY1LqoIfKZHV9lChoBkdAbSa57w8W9GgHTRwCaAhHQGNZ2bgCOm11fZQoaAZHQGkdG5c1O0toB026AWgIR0BjX8BMi8nNdX2UKGgGR0Bq2l0V8CxNaAdN0gFoCEdAY2W35N47inV9lChoBkdAa1x8Rcu8LGgHTZUBaAhHQGNq0XP7el91fZQoaAZHwG6XIQnQY1poB02aAWgIR0BjcDFqBVdYdX2UKGgGR8AxPz3AVO9GaAdNsAFoCEdAY3WJJoTPB3V9lChoBkdAb8nfCyhSL2gHTQUCaAhHQGN8JYLb5/N1fZQoaAZHQApNdAxBVuJoB03kAWgIR0BjgnOQhfShdX2UKGgGR0A1ZRq46Oo6aAdL32gIR0BjhW7HyVfNdX2UKGgGR0BpMJx1gYxdaAdNiQJoCEdAY44j/MnqmnV9lChoBkfAFMQ+EAYHgWgHTbYBaAhHQGOTkFW4mTl1fZQoaAZHQEhEL5RCQcRoB0vXaAhHQGOWbtRekYZ1fZQoaAZHwC5U8eS0Sh9oB00iAWgIR0Bjmik0rK/3dX2UKGgGR0BtmCwSrYGuaAdN/wFoCEdAY6DC9h7VrnV9lChoBkdAamSr8zhxYWgHTQQCaAhHQGOncbrC3w11fZQoaAZHQG0T/6O5rgxoB00pAmgIR0BjrtZcLSeAdX2UKGgGR0BsbKG1x82KaAdN8wFoCEdAY7VRnezlcXV9lChoBkdAazS0GeMAFWgHTWsCaAhHQGO9P5P/JeV1fZQoaAZHQGojX4bjtHBoB01hAmgIR0BjxQVTJhfCdX2UKGgGR8A2xMcIZ62OaAdNMAFoCEdAY8kd9Ujs2XV9lChoBkdAbqZ4oJAt4GgHTZ0BaAhHQGPOYe9zwMJ1fZQoaAZHwB0MiW3Sa3JoB02sAWgIR0Bj0/6j3225dX2UKGgGR8BA7pC8e0XxaAdNLQFoCEdAY9fewcHW0HV9lChoBkfAWLHPD50r9WgHS+doCEdAY9rnCfpUxXV9lChoBkdAayUZWq94/2gHTcQBaAhHQGPgxKYiPhh1fZQoaAZHQGhgROUMXrNoB02oAWgIR0Bj5iWRigCfdX2UKGgGR0BruaF9KEnLaAdNVAFoCEdAY+q0Mw1zhnV9lChoBkdAOkw1NxlxwWgHTU4BaAhHQGPu+kP+XJJ1fZQoaAZHQHBq4Ma0hNdoB03DAWgIR0Bj9OV7hNucdX2UKGgGR8BLz08eS0SiaAdNmwFoCEdAY/oSSNfgJnV9lChoBkfAFL1WKdhAnmgHTXwBaAhHQGP/LaM72ct1fZQoaAZHwGaxReLNwBJoB03ZAWgIR0BkBWIKtxMndX2UKGgGR0BnP8s6JZW8aAdNSQJoCEdAZA0Jl8PWhHV9lChoBkdAN9utOmBOHmgHTW4BaAhHQGQRsOXmeUZ1fZQoaAZHQGsufSQYDT1oB005AmgIR0BkGTKA8SwodX2UKGgGR0BsyTtw71ZlaAdNTwJoCEdAZCDdWQwK0HV9lChoBkdAca1k3S8aoGgHTWUBaAhHQGQlamoBJZp1fZQoaAZHQGuTqu0TlDFoB03HAWgIR0BkK2wTufEodX2UKGgGR7/z80P6KtPpaAdNGgFoCEdAZC8PkJa7mXV9lChoBkdAcWD65Gz8g2gHTe4BaAhHQGQ1gvDgqEx1fZQoaAZHwELVjPOY6XBoB01jAWgIR0BkOf1xsEaEdX2UKGgGR8AgLxYJVsDXaAdNMwFoCEdAZD4h1Tzd13V9lChoBkdAa8nZrYXfqGgHTZsBaAhHQGRDZzYEnst1fZQoaAZHQGVBWcz67/ZoB03AAmgIR0BkTKp71Iy1dX2UKGgGR8BB70Zm7J4jaAdNQQFoCEdAZFDBMSK3u3V9lChoBkdADByPMjeKsWgHS9NoCEdAZFOLE1l5GHV9lChoBkfAEOyMDOkcj2gHTS0BaAhHQGRXeso2GZh1fZQoaAZHwGOSQ5NoJzFoB0uzaAhHQGRZ38n/kvN1fZQoaAZHQGRmSuQp4KRoB01+AWgIR0BkXsP6KtPpdX2UKGgGR0AK3iJfpljFaAdNLQFoCEdAZGLWpZOi4HV9lChoBkdAchaqC6H0smgHTVcBaAhHQGRnPbO/tY11fZQoaAZHwEtflnyup0hoB0v4aAhHQGRqexW1c+t1fZQoaAZHQCoBEjPfKp1oB01HAWgIR0BkbqBbwBo3dX2UKGgGR0A6DTjNpudgaAdNIQFoCEdAZHJV6u4gBHV9lChoBkdAbhfYywfQr2gHTUMBaAhHQGR2seXAuZl1fZQoaAZHQGxl1eBxxT9oB02sAWgIR0BkfCW3Sa3JdX2UKGgGR0A+KEa2nbZfaAdNJgFoCEdAZH/3vhIe5nV9lChoBkdANFuP7vXsgWgHTSUBaAhHQGSD8Bltj1B1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 6256,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 256,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 1024,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3N5c2NvbWFjaC8uY29uZGEvZW52cy9STC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc3lzY29tYWNoLy5jb25kYS9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3N5c2NvbWFjaC8uY29uZGEvZW52cy9STC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc3lzY29tYWNoLy5jb25kYS9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62557e7f42981f9de1ed86e59ad33bbe0d88d69c83035c998f9ab31129e03567
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe7b29694eaa8c0430d63d48e8d62c8027d2405756a552eb6e25023903a121c3
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.2.0-33-generic-x86_64-with-glibc2.17 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Sep 7 10:33:52 UTC 2
|
2 |
+
- Python: 3.8.18
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
replay.mp4
ADDED
Binary file (172 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -26.851714699999995, "std_reward": 21.188723367898113, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-02T11:03:23.466494"}
|